Elektrokatalyse - Chemie und Struktur von Eisen- Kobalt-Oxyhydroxiden vermessen

LiFe<sub>x-1</sub>Co<sub>x</sub> Borophosphate k&ouml;nnten als preiswerte Anoden f&uuml;r die Erzeugung von gr&uuml;nem Wasserstoff eingesetzt werden. Nun hat ein Team an BESSY II untersucht, was an den katalytisch aktiven Molek&uuml;lzentren passiert.

LiFex-1Cox Borophosphate könnten als preiswerte Anoden für die Erzeugung von grünem Wasserstoff eingesetzt werden. Nun hat ein Team an BESSY II untersucht, was an den katalytisch aktiven Molekülzentren passiert. © P. Menezes / HZB /TU Berlin

Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat Kobalt-Eisen-Oxyhydroxide an BESSY II untersucht. Diese Materialklasse zählt zu den besten Anoden-Katalysatoren, um elektrolytisch Wasser aufzuspalten und grünen Wasserstoff zu gewinnen. Insbesondere gelang es, die Oxidationsstufen der aktiven Elemente in verschiedenen Konfigurationen zu bestimmen. Die Ergebnisse könnten zur wissensbasierten Entwicklung neuer hocheffizienter und kostengünstiger katalytisch aktiver Materialien beitragen.

Sobald wie möglich müssen wir ohne fossile Brennstoffe auskommen, nicht nur im Energiesektor, sondern auch in der Industrie. Die aber ist auf Kohlenwasserstoffe und andere chemische Grundstoffe angewiesen, die bisher aus fossilen Ressourcen gewonnen werden. Solche Grundstoffe können im Prinzip mit Hilfe elektrokatalytisch aktiver Materialien und erneuerbar erzeugter Energie auch aus Wasser und Kohlendioxid hergestellt werden. Derzeit bestehen diese Katalysatormaterialien jedoch entweder aus teuren und seltenen Materialien oder sind nicht effizient genug.

Schlüsselreaktion bei der Wasserspaltung

Ein Team um Dr. Prashanth W. Menezes (HZB/TU-Berlin) hat nun Einblicke in die Chemie eines der aktivsten Katalysatoren für die anodische Sauerstoffentwicklungsreaktion (OER) gewonnen. Dies ist eine Schlüsselreaktion bei der Wasserspaltung, die Elektronen für die Wasserstoffentwicklungsreaktion (HER) bereit stellt. Der Wasserstoff kann dann zum Beispiel zu Kohlenwasserstoffen weiter verarbeitet werden. Darüber hinaus spielt die OER auch bei der direkten elektrokatalytischen Reduktion von Kohlendioxid zu Alkoholen oder Kohlenwasserstoffen eine zentrale Rolle.

Elektrokatalysatoren für die Sauerstoffentwicklung

Eine vielversprechende Klasse von Elektrokatalysatoren für OER sind Kobalt-Eisen-Oxyhydroxide. Das Forschungsteam analysierte eine Reihe von helikalen LiFe1-xCox-Borophosphaten an BESSY II, die sich während der OER zu aktiven Kobalt-Eisen-Oxyhydroxiden umstrukturieren. Mit  verschiedenen in situ Spektroskopietechniken gelang es, die Oxidationsstufen der Element Eisen (Fe) und Kobalt (Co) zu bestimmen.

Katalytisches Zentrum untersucht

„Eisen spielt eine wichtige Rolle in OER-Katalysatoren auf Kobalt-Basis. Der genaue Grund dafür ist jedoch umstritten. Die meisten Studien gehen davon aus, dass Eisen in niedrigeren Oxidationsstufen (+3) Teil der aktiven Struktur ist. In unserem Fall konnten wir jedoch Eisen in Oxidationsstufen größer als 4 nachweisen, und außerdem zeigen, dass sich Bindungsabstände deutlich verkürzt haben. Damit können wir das katalytisch aktive Zentrum deutlich genauer verstehen", so Menezes.

Elektrokatalysatoren ermöglichen den Ladungstransfer vom Substrat (hier Wasser) zu den Elektroden, was meist mit einer Änderung der Oxidationsstufen der Übergangsmetalle einhergeht. Diese Veränderungen des Oxidationszustands sind jedoch manchmal zu schnell, um erkannt zu werden. Dies macht es schwierig, das Funktionsprinzip des Katalysators zu verstehen, insbesondere wenn er zwei potenziell aktive Elemente wie Eisen und Kobalt enthält. „Wir hoffen, dass die detaillierte elektronische und strukturelle Beschreibung wesentlich zur Verbesserung von OER-Katalysatoren beitragen kann", sagt Menezes.

 

Anmerkung: An dem Team waren Wissenschaftler*innen des Helmholtz-Zentrum Berlin, der Technischen Universität Berlin und der Freien Universität Berlin beteiligt. Die Röntgenabsorptionsspektroskopie wurde an der Beamline KMC-3 bei BESSY II durchgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.