TU Berlin ernennt Renske van der Veen zur Professorin

Dr. Renske van der Veen untersucht an BESSY II katalytische Prozesse, die u.a. für die Produktion von grünem Wasserstoff entscheidend sind.

Dr. Renske van der Veen untersucht an BESSY II katalytische Prozesse, die u.a. für die Produktion von grünem Wasserstoff entscheidend sind. © M: Setzpfandt/HZB

Seit zwei Jahren leitet Dr. Renske van der Veen am HZB eine Forschungsgruppe für zeitaufgelöste Röntgenspektroskopie und Elektronenmikroskopie. Im Zentrum ihrer Forschung stehen katalytische Prozesse, die zum Beispiel die Produktion von grünem Wasserstoff ermöglichen. Nun wurde sie zur S-W2 Professorin im Institut für Optik und Atomare Physik (IOAP) an der Technischen Universität Berlin ernannt.

Dr. Renske van der Veen hat sich auf ultraschnelle Röntgenmethoden spezialisiert, die sie an BESSY II einsetzt, um die schnellen Prozesse während der Katalyse zu untersuchen. Ihre Expertise bringt van der Veen auch in das wissenschaftliche Anforderungsprofil für die Nachfolge-Röntgenquelle BESSY III ein.

Renske van der Veen hat an der ETH Zürich studiert und an der École Polytechnique Fédérale de Lausanne (EPFL) promoviert. Im Anschluss forschte sie am California Institute of Technology, dem Max Planck-Institut für Biophysikalische Chemie in Göttingen und der University of Illinois, wo sie auch eine Assistenzprofessur hatte. Sie wurde für ihre Forschung bereits mit dem Sofja Kovalevskaja Award der Alexander von Humboldt-Stiftung und dem Packard Fellowship for Science and Engineering ausgezeichnet.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.