Perovskite solar cells from the slot die coater - a step towards industrial production

The wet coating with a standard ink composition: the wet perovskite thin films (left) has a rib-like structure. The corresponding SEM image (right) of the annealed perovskite film shows inhomogeneities.

The wet coating with a standard ink composition: the wet perovskite thin films (left) has a rib-like structure. The corresponding SEM image (right) of the annealed perovskite film shows inhomogeneities. © HZB

The wet coating with the optimised ink composition (left) is nearly perfectly even. The corresponding SEM image (right) of the annealed perovskite film shows much less inhomogeneities.

The wet coating with the optimised ink composition (left) is nearly perfectly even. The corresponding SEM image (right) of the annealed perovskite film shows much less inhomogeneities. © HZB

Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.

Metal halide perovskites are considered to be a particularly low-cost and promising class of materials for next-generation solar modules. Perovskite solar cells can be produced with coating processes using liquid inks made from precursor materials and various solvents. After coating, the solvents evaporate and the perovskites crystallise to form a more or less homogeneous layer.

Options for upscaling

Prof. Dr. Eva Unger's team at Helmholtz-Zentrum Berlin has extensive expertise in solution-based processing methods and is investigating options for upscaling. "Perovskite photovoltaics is the best solution-processable PV technology available," says Eva Unger, "but we are only just beginning to understand how the complex interaction of the solvent components affects the quality of the perovskite layers."

Variations of viscosity

This is because when the halide perovskite layers are coated on large surfaces, unwanted inhomogeneities can occur, for example so-called ribbing structures. "By varying the viscosity of the ink, such effects can be minimised," says Jinzhao Li, who is doing his PhD with Unger. At BESSY II, he has investigated how different solvent combinations affect the crystallisation of the perovskite films. The best p-i-n-FAPbI3 perovskite solar cells thus achieve a certified efficiency of 22.3 % on a laboratory scale. Jinzhao Li also produced mini solar modules (active area of 12.6 cm2) with colleagues from the HySPRINT innovation lab and PVcomB, which achieved efficiencies of around 17 %.

Outdoor test for one year

Dr Carolin Ulbrich's team tested the optimised solar cells at PVcomB’s outdoor test facility for a whole year: In the process, the efficiency remained almost stable in winter and spring, and only dropped in the warmer summer months. "These tests of larger modules under real conditions give us valuable information on degradation mechanisms to then further improve the long-term stability of halide perovskite photovoltaics," says Eva Unger.

arö

  • Copy link

You might also be interested in

  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.
  • Long Night of Science 2025
    News
    18.06.2025
    Long Night of Science 2025
    Welcome!