Lithium-Schwefel-Feststoffbatterien: Ladungstransport direkt beobachtet

Die Ver&auml;nderung der Neutronend&auml;mpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d<sub>0</sub> ist die Grenze zum Feststoff-Elektrolyten, d<sub>max</sub> ist die Grenze zwischen Kathode und Stromkollektor.

Die Veränderung der Neutronendämpfung in der Kathode zeigt, wo sich Lithium anreichert: oben beim Entladen, unten beim Aufladen. d0 ist die Grenze zum Feststoff-Elektrolyten, dmax ist die Grenze zwischen Kathode und Stromkollektor. © HZB

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li<sub>6</sub>PS<sub>5</sub>Cl und die Verbundkathode ist S/C/Li<sub>6</sub>PS<sub>5</sub>Cl.

Der Aufbau der Feststoff-Batterie. Die Anode besteht aus Li/In, der Feststoff-Elektrolyt ist Li6PS5Cl und die Verbundkathode ist S/C/Li6PS5Cl. © HZB

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (gr&uuml;n) befinden.

3-D-Tomographie-Bilder des entladenen (oben) und des wieder aufgeladenen Zustands (Mitte), sowie die Differenz zwischen beiden (unten), die anzeigt, wo sich die mobilen Lithium-Ionen (grün) befinden. © HZB

Lithium-Schwefel-Feststoffbatterien bieten im Vergleich zu herkömmlichen Lithium-Ionen-Batterien das Potenzial für eine wesentlich höhere Energiedichte und mehr Sicherheit. Allerdings ist die Leistungsfähigkeit von Feststoffbatterien derzeit noch unzureichend, was vor allem an sehr langen Ladezeiten liegt - und das, obwohl sie theoretisch eine besonders schnelle Aufladung ermöglichen sollten. Eine neue Studie des HZB zeigt nun, dass die Hauptursache dafür die sehr schleppende Einwanderung von Lithium-Ionen in die Verbundkathode ist.

Das Team konstruierte eine spezielle Zelle, um den Transport von Lithium-Ionen zwischen Anode und Kathode in einer Lithium-Schwefel-Feststoffbatterie zu beobachten. Da sich Lithium mit Röntgenmethoden kaum nachweisen lässt, untersuchten die HZB-Physiker Dr. Robert Bradbury und Dr. Ingo Manke die Probezelle mit Neutronen, die extrem empfindlich auf Lithium reagieren. Zusammen mit Dr. Nikolay Kardjilov, HZB, nutzten sie Neutronenradiographie und Neutronentomographie am CONRAD2-Instrument an der Berliner Neutronenquelle BER II1. Auch Gruppen aus Gießen (JLU), Braunschweig (TUBS) und Jülich (FZJ) waren an den Arbeiten beteiligt.

Lithium-Ionen beim Wandern

„Wir haben jetzt eine viel bessere Vorstellung davon, was die Leistung der Batterie einschränkt", sagt Bradbury: „Aus den Daten der operando Neutronenradiographie sehen wir, dass sich eine Reaktionsfront von Lithium-Ionen durch die Verbundkathode ausbreitet, was den negativen Einfluss der niedrigen effektiven Ionenleitfähigkeit bestätigt." Darüber hinaus zeigen die 3D-Neutronentomographie-Bilder, dass sich das eingeschlossene Lithium während des Aufladens in der Nähe des Stromabnehmers konzentriert. „Dies führt zu einer verminderten Kapazität, da nur ein Teil des Lithiums beim Aufladen der Batterie zurücktransportiert wird."

Die beobachtete Lithiumverteilung stimmt sehr gut mit einer Modellrechnung auf Basis der Theorie der porösen Elektroden überein: „Was wir hier in den Neutronenbilddaten beobachten, korreliert gut mit den relevanten elektronischen und ionischen Leitfähigkeitsbedingungen aus dem Modell", sagt Bradbury.

Der Flaschenhals ist identifiziert

Diese Ergebnisse machen auf einen bisher übersehenen Entwicklungsengpass für Feststoffbatterien aufmerksam: Der langsame Ionentransport begrenzt die Leistung. Die Herausforderung besteht nun darin, einen schnelleren Ionentransport innerhalb des Kathodenverbunds zu ermöglichen. „Ohne eine direkte Visualisierung der Reaktionsfront innerhalb des Kathodenverbunds wäre dieser Effekt möglicherweise unbemerkt geblieben, obwohl er für die Entwicklung von Festkörperbatterien von großer Bedeutung ist", sagt Bradbury.

 

Fußnote 1: Die Experimente fanden Ende 2019 statt, bevor die Neutronenquelle BER II abgeschaltet wurde. Die Arbeiten werden zukünftig im Rahmen der gemeinsamen Forschungsgruppe „NI-Matters“ zwischen dem HZB, dem Institut Laue-Langevin (Frankreich) und der Universität Grenoble (Frankreich) weiter fortgeführt.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.
  • 10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Nachricht
    16.07.2025
    10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Die UNITE – Startup Factory Berlin-Brandenburg wird vom Bundesministerium für Wirtschaft und Energie als eines von zehn bundesweiten Leuchtturmprojekten für wissenschaftsbasierte Gründungen ausgezeichnet. UNITE soll als zentrale Transfer-Plattform für technologiegetriebene Ausgründungen aus der Wissenschaft und Industrie in der Hauptstadtregion etabliert werden. Auch das Helmholtz-Zentrum Berlin wird davon profitieren.

  • Fast 4000 Menschen bei der Langen Nacht der Wissenschaften am HZB
    Nachricht
    01.07.2025
    Fast 4000 Menschen bei der Langen Nacht der Wissenschaften am HZB
    Das Helmholtz-Zentrum Berlin freute sich über knapp 4000 Besucherinnen und Besucher, die zur Langen Nacht der Wissenschaft an den Adlershofer Standort kamen. Es war ein großartiges Fest der Wissenschaft und wir danken allen Gästen für ihr Interesse.