Catherine Dubourdieu receives ERC Advanced Grant

Catherine Dubourdieu: The physicist and materials scientist receives the ERC Advanced Grant of 2.5 million euros over five years for her project LUCIOLE.

Catherine Dubourdieu: The physicist and materials scientist receives the ERC Advanced Grant of 2.5 million euros over five years for her project LUCIOLE. © Materials Research Society USA

Prof. Dr. Catherine Dubourdieu heads the Institute “Functional Oxides for Energy-Efficient Information Technology” at HZB and is Professor at the Physical and Theoretical Chemistry division at Freie Universität Berlin. The physicist and materials scientist specialises in nanometre-sized functional oxides and their applications in information technologies. She has now been awarded a prestigious ERC Advanced Grant for her research project “LUCIOLE”, which aims at combining ferroelectric polar textures with conventional silicon technologies.

With its ERC Advanced Grant format, the European Research Council enables outstanding scientists to conduct pioneering and groundbreaking high-risk research. An ERC Advanced Grant is considered one of the highest awards for experienced researchers.

The project LUCIOLE focuses on ferroelectric nanometer-size oxides, which can host exotic polar textures such as vortices or skyrmions. With a wealth of potential emergent properties, whirling topological polar nanodomains could lead to novel devices, for example ultra-compact memories that store more than a terabyte per square inch. “We want to pave the way to future low power nanoelectronics based on topological defects” says Catherine Dubourdieu.

Monolithically integrated polar textures on silicon will be created and investigated on a nanoscale with state-of-the-art microscopy and spectroscopy techniques. These engineered polarization patterns will be embedded into ultra-scaled devices to study their manipulation and dynamics under electric field.

"We have known about the phenomenon of ferroelectricity for a good hundred years. But it is only in recent years that exotic polar textures have been unveiled. This opens up exciting possibilities for revolutionary new materials and devices. This is definitely the best time to be at the forefront of this field of research," says Dubourdieu.

LUCIOLE: Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon.

News from the ERC

With ERC Grants, the European Research Council supports outstanding scientists who want to implement risky but potentially groundbreaking research ideas. An ERC Advanced Grant is considered one of the highest awards for experienced researchers.

arö

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.