Catherine Dubourdieu receives ERC Advanced Grant

Catherine Dubourdieu: The physicist and materials scientist receives the ERC Advanced Grant of 2.5 million euros over five years for her project LUCIOLE.

Catherine Dubourdieu: The physicist and materials scientist receives the ERC Advanced Grant of 2.5 million euros over five years for her project LUCIOLE. © Materials Research Society USA

Prof. Dr. Catherine Dubourdieu heads the Institute “Functional Oxides for Energy-Efficient Information Technology” at HZB and is Professor at the Physical and Theoretical Chemistry division at Freie Universität Berlin. The physicist and materials scientist specialises in nanometre-sized functional oxides and their applications in information technologies. She has now been awarded a prestigious ERC Advanced Grant for her research project “LUCIOLE”, which aims at combining ferroelectric polar textures with conventional silicon technologies.

With its ERC Advanced Grant format, the European Research Council enables outstanding scientists to conduct pioneering and groundbreaking high-risk research. An ERC Advanced Grant is considered one of the highest awards for experienced researchers.

The project LUCIOLE focuses on ferroelectric nanometer-size oxides, which can host exotic polar textures such as vortices or skyrmions. With a wealth of potential emergent properties, whirling topological polar nanodomains could lead to novel devices, for example ultra-compact memories that store more than a terabyte per square inch. “We want to pave the way to future low power nanoelectronics based on topological defects” says Catherine Dubourdieu.

Monolithically integrated polar textures on silicon will be created and investigated on a nanoscale with state-of-the-art microscopy and spectroscopy techniques. These engineered polarization patterns will be embedded into ultra-scaled devices to study their manipulation and dynamics under electric field.

"We have known about the phenomenon of ferroelectricity for a good hundred years. But it is only in recent years that exotic polar textures have been unveiled. This opens up exciting possibilities for revolutionary new materials and devices. This is definitely the best time to be at the forefront of this field of research," says Dubourdieu.

LUCIOLE: Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon.

News from the ERC

With ERC Grants, the European Research Council supports outstanding scientists who want to implement risky but potentially groundbreaking research ideas. An ERC Advanced Grant is considered one of the highest awards for experienced researchers.

arö

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed together with Freiberg Instruments an innovative monochromator that is now being produced and marketed. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.
  • BESSY II: Heterostructures for Spintronics
    Science Highlight
    20.09.2024
    BESSY II: Heterostructures for Spintronics
    Spintronic devices work with spin textures caused by quantum-physical interactions. A Spanish-German collaboration has now studied graphene-cobalt-iridium heterostructures at BESSY II. The results show how two desired quantum-physical effects reinforce each other in these heterostructures. This could lead to new spintronic devices based on these materials.