Catherine Dubourdieu receives ERC Advanced Grant

Catherine Dubourdieu: The physicist and materials scientist receives the ERC Advanced Grant of 2.5 million euros over five years for her project LUCIOLE.

Catherine Dubourdieu: The physicist and materials scientist receives the ERC Advanced Grant of 2.5 million euros over five years for her project LUCIOLE. © Materials Research Society USA

Prof. Dr. Catherine Dubourdieu heads the Institute “Functional Oxides for Energy-Efficient Information Technology” at HZB and is Professor at the Physical and Theoretical Chemistry division at Freie Universität Berlin. The physicist and materials scientist specialises in nanometre-sized functional oxides and their applications in information technologies. She has now been awarded a prestigious ERC Advanced Grant for her research project “LUCIOLE”, which aims at combining ferroelectric polar textures with conventional silicon technologies.

With its ERC Advanced Grant format, the European Research Council enables outstanding scientists to conduct pioneering and groundbreaking high-risk research. An ERC Advanced Grant is considered one of the highest awards for experienced researchers.

The project LUCIOLE focuses on ferroelectric nanometer-size oxides, which can host exotic polar textures such as vortices or skyrmions. With a wealth of potential emergent properties, whirling topological polar nanodomains could lead to novel devices, for example ultra-compact memories that store more than a terabyte per square inch. “We want to pave the way to future low power nanoelectronics based on topological defects” says Catherine Dubourdieu.

Monolithically integrated polar textures on silicon will be created and investigated on a nanoscale with state-of-the-art microscopy and spectroscopy techniques. These engineered polarization patterns will be embedded into ultra-scaled devices to study their manipulation and dynamics under electric field.

"We have known about the phenomenon of ferroelectricity for a good hundred years. But it is only in recent years that exotic polar textures have been unveiled. This opens up exciting possibilities for revolutionary new materials and devices. This is definitely the best time to be at the forefront of this field of research," says Dubourdieu.

LUCIOLE: Layering, Understanding, Controlling and Integrating Ferroelectric Polar Textures on Silicon.

News from the ERC

With ERC Grants, the European Research Council supports outstanding scientists who want to implement risky but potentially groundbreaking research ideas. An ERC Advanced Grant is considered one of the highest awards for experienced researchers.

arö


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.