Humboldt Fellow joins HZB for battery research

Dr. Wenxi Wang specialises in the design of organic electrodes for lithium-sulfur and zinc-ion batteries and investigates interactions between ions and active materials.

Dr. Wenxi Wang specialises in the design of organic electrodes for lithium-sulfur and zinc-ion batteries and investigates interactions between ions and active materials. © arö/HZB

Dr. Wenxi Wang is working in the team of Prof. Yan Lu as Humboldt Foundation postdoctoral fellow. He studied at the Southern University of Science and Technology in Shenzhen, China, and completed his doctorate at the King Abdullah University of Science and Technology in Saudi Arabia. He specialises in the precise design of organic electrodes for lithium-sulfur and zinc-ion batteries and the investigation of the interactions between ions and active materials.

"At Helmholtz-Zentrum Berlin I find excellent conditions to deepen my research," says Wenxi Wang. Prof. Yan Lu's group has extensive experience in the synthesis and characterisation of novel electrode materials and state-of-the-art infrastructures for battery research. In addition, the X-ray source BESSY II at HZB offers a variety of spectroscopic methods to analyse electrochemical reactions in real time.

Lithium-sulfur (Li-S) batteries are considered one of the most interesting technologies to replace lithium-ion batteries due to their extremely high energy density and cheap starting materials. However, their performance still falls far short of expectations due, in part due to polysulfide intermediates that form during charging cycles. Porous host materials can trap such polysulfides, improving the energy density and lifetime of Li-S batteries. "My research project focuses on the precise design of organic-based host materials with suitable pore sizes and functional groups (Covalent Organic Frameworks, COF) to enable high-performance Li-S batteries and deepen our understanding of their mechanisms," says Wang.

arö

  • Copy link

You might also be interested in

  • HZB patent for semiconductor characterisation goes into serial production
    News
    10.10.2024
    HZB patent for semiconductor characterisation goes into serial production
    An HZB team has developed an innovative monochromator that is now being produced and marketed by a company. The device makes it possible to quickly and continuously measure the optoelectronic properties of semiconductor materials with high precision over a broad spectral range from the near infrared to the deep ultraviolet. Stray light is efficiently suppressed. This innovation is of interest for the development of new materials and can also be used to better control industrial processes.
  • Photovoltaic living lab reaches the 100 Megawatt-hour mark
    News
    27.09.2024
    Photovoltaic living lab reaches the 100 Megawatt-hour mark
    About three years ago, the living laboratory at HZB went into operation. Since then, the photovoltaic facade has been generating electricity from sunlight. On September 27, 2024, it reached the milestone of 100 megawatt-hours.

  • Alternating currents for alternative computing with magnets
    Science Highlight
    26.09.2024
    Alternating currents for alternative computing with magnets
    A new study conducted at the University of Vienna, the Max Planck Institute for Intelligent Systems in Stuttgart, and the Helmholtz Centers in Berlin and Dresden takes an important step in the challenge to miniaturize computing devices and to make them more energy-efficient. The work published in the renowned scientific journal Science Advances opens up new possibilities for creating reprogrammable magnonic circuits by exciting spin waves by alternating currents and redirecting these waves on demand. The experiments were carried out at the Maxymus beamline at BESSY II.