Graphen auf Titancarbid erzeugt neuartigen Phasenübergang

Graphen-induzierter Lifshitz-Übergang von einer blütenblattförmigen Fermi-Fläche zu einer zahnradförmigen Loch-Fermi-Fläche durch vergleichende vollständige Photoemissionskartierung der Bandstrukturen von blankem TiC(111) und Graphen/TiC(111).

Graphen-induzierter Lifshitz-Übergang von einer blütenblattförmigen Fermi-Fläche zu einer zahnradförmigen Loch-Fermi-Fläche durch vergleichende vollständige Photoemissionskartierung der Bandstrukturen von blankem TiC(111) und Graphen/TiC(111). © HZB

An der Röntgenquelle BESSY II hat ein Team einen Lifshitz-Übergang in TiC entdeckt, der durch eine Beschichtung mit Graphen hervorgerufen wird. Die Ergebnisse zeigen das Potenzial von 2D-Materialien wie Graphen und die Auswirkungen, die sie durch Wechselwirkungen im Nahfeld auf benachbarte Materialien haben.

Das Stapeln von 2D-Materialien bietet Optionen, um Materialeigenschaften auf eine kontrollierbare Weise zu verändern. Allerdings ist der Einfluss von 2D-Materialien auf die Eigenschaften benachbarter Materialien durch Proximity-Effekte noch nicht vollständig geklärt. Insbesondere zeigt sich, dass dies Eigenschaften wie Bandlücken in Halbleitern und  exzitonischen Eigenschaften beeinflussen kann. Die Fermi-Flächen von Metallen gehören bisher nicht zu den Eigenschaften, die auf einen Annäherungseffekt reagieren. 

Die Fermi-Fläche eines Metalls ist ein mathematisches Konzept, das die Elektronen mit der höchsten Energie im Material abbildet. Nur diese Elektronen sind an Eigenschaften wie der elektrischen Leitfähigkeit beteiligt. Ein wichtiger Aspekt der Fermi-Fläche ist, dass sie die Elektronen in Bezug auf die Richtung ihrer Bewegung darstellt.

Die neue Studie von Andrei Varykhalov und seinen Kollegen bei BESSY II zeigt, dass eine Graphenschicht einen Lifshitz-Übergang im oberflächennahen Bereich eines darunter liegenden Metalls, TiC, hervorrufen kann: Die Fermi-Fläche wandelt sich von einer lochartigen zu einer elektronenartigen Fermi-Fläche. Die Änderung der Fermi-Fläche ist besonders relevant, da dies auch die Richtung der Elektronenbewegung und im Magnetfeld auch die Richtung des makroskopischen elektrischen Stroms ändert. 

Die Entdeckung eröffnet einen neuen Weg zur Kontrolle und Manipulation der elektronischen Eigenschaften von Materialien. Dies könnte für eine Reihe von technologischen Anwendungen spannend sein, zum Beispiel für die Entwicklung von Materialien mit Quanteneigenschaften wie Hochtemperatur-Supraleitfähigkeit.

red.


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.