Graphen auf Titancarbid erzeugt neuartigen Phasenübergang

Graphen-induzierter Lifshitz-Übergang von einer blütenblattförmigen Fermi-Fläche zu einer zahnradförmigen Loch-Fermi-Fläche durch vergleichende vollständige Photoemissionskartierung der Bandstrukturen von blankem TiC(111) und Graphen/TiC(111).

Graphen-induzierter Lifshitz-Übergang von einer blütenblattförmigen Fermi-Fläche zu einer zahnradförmigen Loch-Fermi-Fläche durch vergleichende vollständige Photoemissionskartierung der Bandstrukturen von blankem TiC(111) und Graphen/TiC(111). © HZB

An der Röntgenquelle BESSY II hat ein Team einen Lifshitz-Übergang in TiC entdeckt, der durch eine Beschichtung mit Graphen hervorgerufen wird. Die Ergebnisse zeigen das Potenzial von 2D-Materialien wie Graphen und die Auswirkungen, die sie durch Wechselwirkungen im Nahfeld auf benachbarte Materialien haben.

Das Stapeln von 2D-Materialien bietet Optionen, um Materialeigenschaften auf eine kontrollierbare Weise zu verändern. Allerdings ist der Einfluss von 2D-Materialien auf die Eigenschaften benachbarter Materialien durch Proximity-Effekte noch nicht vollständig geklärt. Insbesondere zeigt sich, dass dies Eigenschaften wie Bandlücken in Halbleitern und  exzitonischen Eigenschaften beeinflussen kann. Die Fermi-Flächen von Metallen gehören bisher nicht zu den Eigenschaften, die auf einen Annäherungseffekt reagieren. 

Die Fermi-Fläche eines Metalls ist ein mathematisches Konzept, das die Elektronen mit der höchsten Energie im Material abbildet. Nur diese Elektronen sind an Eigenschaften wie der elektrischen Leitfähigkeit beteiligt. Ein wichtiger Aspekt der Fermi-Fläche ist, dass sie die Elektronen in Bezug auf die Richtung ihrer Bewegung darstellt.

Die neue Studie von Andrei Varykhalov und seinen Kollegen bei BESSY II zeigt, dass eine Graphenschicht einen Lifshitz-Übergang im oberflächennahen Bereich eines darunter liegenden Metalls, TiC, hervorrufen kann: Die Fermi-Fläche wandelt sich von einer lochartigen zu einer elektronenartigen Fermi-Fläche. Die Änderung der Fermi-Fläche ist besonders relevant, da dies auch die Richtung der Elektronenbewegung und im Magnetfeld auch die Richtung des makroskopischen elektrischen Stroms ändert. 

Die Entdeckung eröffnet einen neuen Weg zur Kontrolle und Manipulation der elektronischen Eigenschaften von Materialien. Dies könnte für eine Reihe von technologischen Anwendungen spannend sein, zum Beispiel für die Entwicklung von Materialien mit Quanteneigenschaften wie Hochtemperatur-Supraleitfähigkeit.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Nachricht
    04.02.2025
    HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Durch die Kombination von zwei Halbleiterdünnschichten zu einer Tandemsolarzelle sind hohe Wirkungsgrade bei minimalem ökologischem Fußabdruck erreichbar. Teams aus dem HZB und der Humboldt-Universität zu Berlin haben nun eine Tandemzelle aus CIGS und Perowskit vorgestellt, die mit einem Wirkungsgrad von 24,6 % den neuen Weltrekord hält. Dieser Wert wurde durch das Fraunhofer-Institut für Solare Energiesysteme ISE zertifiziert.
  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.