Fraktonen als Informationsspeicher: Noch nicht greifbar, aber nah

Aus den numerischen Modellierungen ergibt sich die Fraktonen-Signatur mit typischen Knotenpunkten, die sie mit Neutronenstreuung auch experimentell zu beobachten sein sollte (links). Durch das Zulassen von Quantenfluktuationen verschmiert diese Signatur, selbst bei T=0 (rechts).

Aus den numerischen Modellierungen ergibt sich die Fraktonen-Signatur mit typischen Knotenpunkten, die sie mit Neutronenstreuung auch experimentell zu beobachten sein sollte (links). Durch das Zulassen von Quantenfluktuationen verschmiert diese Signatur, selbst bei T=0 (rechts). © HZB

Ein neues Quasiteilchen mit interessanten Eigenschaften ist aufgetaucht – vorerst allerdings nur in theoretischen Modellierungen von Festkörpern mit bestimmten magnetischen Eigenschaften. Anders als erwartet, bringen Quantenfluktuationen das Quasiteilchen jedoch nicht deutlicher zum Vorschein, sondern verschmieren seine Signatur, zeigt nun ein internationales Team am HZB und der Freien Universität Berlin.

 

Anregungen in Festkörpern lassen sich mathematisch auch als Quasiteilchen abbilden, zum Beispiel können Gitterschwingungen, die mit der Temperatur zunehmen, gut als Phononen beschrieben werden. Rein mathematisch sind jedoch auch Quasiteilchen möglich, die bislang noch nie in einem Material beobachtet wurden. Wenn solche "theoretischen" Quasiteilchen interessante Talente besitzen, dann lohnt sich ein näherer Blick. Zum Beispiel auf die Fraktonen.

Kandidaten für die Speicherung von Information

Fraktonen sind Bruchteile von Spinanregungen und dürfen keine kinetische Energie besitzen. Das bedeutet: Sie sind vollkommen ortsfest. Damit sind Fraktonen neue Kandidaten für die perfekt sichere Informationsspeicherung. Zumal sie sich unter besonderen Bedingungen dann doch versetzen lassen, nämlich Huckepack auf einem weiteren Quasiteilchen. „Die Fraktonen sind aus einer mathematischen Erweiterung der Quantenelektrodynamik entstanden, in denen elektrische Felder nicht als Vektoren, sondern als Tensoren behandelt werden - ganz losgelöst von realen Materialien“, erklärt Prof. Dr. Johannes Reuther, theoretischer Physiker an der Freien Universität Berlin und am HZB.

Einfache Modellsysteme

Um Fraktonen in Zukunft auch experimentell beobachten zu können, ist es nötig, möglichst einfache Modellsysteme zu finden: Daher modellierte man zunächst oktaedrische Kristallstrukturen mit antiferromagnetisch wechselwirkenden Eckatomen. Dabei zeigten sich besondere Muster mit verschiedenen Knotenpunkten in den Spin-Korrelationen, die im Prinzip in einem realen Material auch experimentell mit Neutronenexperimenten nachweisbar sein müssten. „Die Spins wurden in bisherigen Arbeiten jedoch wie klassische Vektoren behandelt, ohne Berücksichtigung von Quantenfluktuationen“, sagt Reuther.

Jetzt mit Quantenfluktuationen

Deshalb hat nun Reuther zusammen mit Yasir Iqbal vom Indian Institute of Technology in Chennai, Indien und seinem Doktoranden Nils Niggemann erstmals Quantenfluktuationen in die Berechnung dieses oktaedrischen Festkörpersystems mit aufgenommen. Es handelt sich um sehr aufwändige numerische Berechnungen, die grundsätzlich in der Lage sind, Fraktonen abzubilden. „Das Ergebnis hat uns überrascht, denn tatsächlich sehen wir, dass Quantenfluktuationen die Fraktonen nicht deutlicher hervortreten lassen, sondern im Gegenteil, vollständig verwischen, sogar am absoluten Nullpunkt der Temperatur“, sagt Niggemann.

Im nächsten Schritt wollen die drei theoretischen Physiker eine Modellierung entwickeln, in der sich Quantenfluktuationen hoch- oder runterregeln lassen. Eine Art Zwischenwelt zwischen der klassischen Festkörperphysik und den bisherigen Simulationen, in der sich die erweiterte quantenelektrodynamische Theorie mit ihren Fraktonen genauer untersuchen lässt.

Von Theorie zum Experiment

Noch ist kein Material bekannt, das Fraktonen zeigt. Aber wenn die nächsten Modellierungen genauere Hinweise geben, wie Kristallstruktur und magnetische Wechselwirkungen beschaffen sein müssten, dann könnten Teams aus der Experimentalphysik damit beginnen, solche Materialien zu entwerfen und durchzumessen. „In den nächsten Jahren wird es sicher noch keine Anwendung dieser Erkenntnisse geben, aber vielleicht in den kommenden Dekaden und dann wäre es der berühmte Quantensprung, mit wirklich neuen Eigenschaften“, sagt Reuther.

Antonia Rötger

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.