Spintronik an BESSY II: Domänenwände in magnetischen Nanodrähten

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder.

Diese magnetempfindlichen Abbildungen entstanden am HZB: a) XAS-Bild des Nanodraht-Kreuzes. Röntgenstrahl und Magnetfeld sind entlang der (vertikalen) Richtung des Nanodrahtes ausgerichtet (grüner Pfeil). b-f) XMCD-Bilder des Kreuzes für verschiedene angelegte Felder. © HZB

Magnetische Domänenwände sorgen für elektrischen Widerstand, da es für Elektronenspins schwierig ist, ihrer magnetischen Struktur zu folgen. Dieses Phänomen könnte in spintronischen Bauelementen genutzt werden, bei denen der elektrische Widerstand je nach Vorhandensein oder Fehlen einer Domänenwand variieren kann. Eine besonders interessante Materialklasse sind Halbmetalle wie La2/3Sr1/3MnO3 (LSMO). Sie weisen vollständige Spinpolarisation auf. Allerdings war der Widerstand einer einzelnen Domänenwand in Halbmetallen bisher noch nicht bestimmt worden. Nun hat ein Team aus Spanien, Frankreich und Deutschland eine einzelne Domänenwand auf einem LSMO-Nanodraht erzeugt und Widerstandsänderungen gemessen, die 20mal größer sind als bei normalen Ferromagneten wie Kobalt.

 

Die magnetische Textur, die magnetischen Domänenwänden eigen ist, birgt Potenzial für spintronische Anwendungen. Der elektrische Widerstand in Ferromagneten hängt davon ab, ob Domänenwände vorhanden sind oder nicht. Dieser binäre Effekt (bekannt als Domänenwand-Magnetowiderstand) könnte zur Codierung von Informationen in spintronischen Speichergeräten genutzt werden. Ihre Nutzung wird jedoch durch die geringen Änderungen des Widerstands behindert, die bei normalen Ferromagneten beobachtet werden. Eine besonders interessante Klasse von Materialien sind Manganit-Perowskite wie La2/3Sr1/3MnO3 (LSMO). Diese Verbindungen weisen nur eine Art von Spin auf (vollständige Spinpolarisation), was potenziell zu Domänenwand-Magnetowiderstandseffekten führen könnte, die groß genug sind, um in einer neuen Generation von spintronischen Sensoren und Injektoren genutzt zu werden.

Trotz dieser Perspektive gibt es große Diskrepanzen bei den berichteten Werten des Domänenwand-Magnetowiderstands für dieses System. Ein Team aus Spanien, Frankreich und Deutschland hat nun Bauelemente aus Nanodrähten hergestellt, die die Keimbildung einzelner magnetischer Domänenwände ermöglichen. Magnetotransportmessungen zeigen, dass das Vorhandensein einer Domänenwand zu einer Erhöhung des elektrischen Widerstands um bis zu 12 % führt. In absoluten Zahlen ist die beobachtete Widerstandsänderung 20mal größer als in einem normalen Ferromagneten wie Kobalt.

Diese Arbeit ist das Ergebnis einer langjährigen Zusammenarbeit, die Filmwachstum und Nanofabrikation, Transportmessungen, Kontaktmikroskopie (MFM), theoretische Simulationen und den Einsatz fortschrittlicher Charakterisierungstechniken wie der Röntgen-Photoemissions-Elektronenmikroskopie umfasst. Die Kombination einer Vielzahl unterschiedlicher Techniken ermöglicht einen facettenreichen Blick auf ein komplexes Problem, der neue Einblicke in eine heftig diskutierte offene Frage ermöglicht hat.

Sergio Valencia

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.
  • Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Nachricht
    20.06.2025
    Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Am 28. Juni ist es wieder so weit: Die Lange der Wissenschaften findet von 17 - 0 Uhr in Berlin und auch in Adlershof statt. Werfen Sie einen Blick hinter die Kulissen unserer spannenden Forschung!
  • HZB und National University Kyiv-Mohyla-Akademie starten Zusammenarbeit im Bereich Energie und Klima
    Nachricht
    19.06.2025
    HZB und National University Kyiv-Mohyla-Akademie starten Zusammenarbeit im Bereich Energie und Klima
    Das Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) und die Nationale Universität „Kiew-Mohyla-Akademie“ (NaUKMA) haben eine Absichtserklärung (Memorandum of Understanding, MoU) unterzeichnet. Das MoU dient als Ausgangspunkt für gemeinsame Forschung, akademischen Austausch und Kapazitätsaufbau zwischen den beiden Institutionen. Es werden Maßnahmen zur Einrichtung des Joint Research and Policy Laboratory an der NaUKMA in Kiew ergriffen. Ziel des künftigen Labors ist die gemeinsame Entwicklung von Forschung und Politikanalysen mit Schwerpunkt auf den Energie- und Klimaaspekten der EU-Integration der Ukraine.