Boosting PET recycling with higher standards for laboratory experiments

In principle, PET molecules can be broken down into their basic building blocks using suitable enzymes. In practice, however, these approaches are difficult to transfer to an industrial scale. A new study shows how raising the bar in laboratory experiments could help identify promising enzymes for up-scaling and thus accelerate the development of industrial enzymatic plastics degradation.

In principle, PET molecules can be broken down into their basic building blocks using suitable enzymes. In practice, however, these approaches are difficult to transfer to an industrial scale. A new study shows how raising the bar in laboratory experiments could help identify promising enzymes for up-scaling and thus accelerate the development of industrial enzymatic plastics degradation. © HZB/Frank Lennartz, Gert Weber

Many enzymes promise to break down plastic. But what works well in the lab often fails on a large scale. Now a new study by Gert Weber, HZB, Uwe Bornscheuer, University of Greifswald, and Alain Marty, Chief Scientific Officer of Carbios, shows how raising the bar for laboratory experiments could help identify promising approaches more quickly. The team demonstrated the new standards on four newly discovered enzymes.

From time to time, media reports of major advances in the recycling of polyethylene terephthalate (PET). This is thanks to newly discovered enzymes, breaking down plastic into its constituent parts. However, the success story from the academic laboratory is usually followed by silence. PET accounts for 18% of the world’s plastic production, making it one of the most important plastics in terms of volume. Biotech company Carbios, for example, is building a plant in the north east of France by 2025. This plant will be able to recycle 50.000 tons of PET per year. They are interested to find the best possible enzymes for their industrial setup and have realised that many results from laboratory research cannot be transferred to a larger scale.

Upscaling experiments on PET recycling is difficult

“Some enzymes work great in laboratory experiments for a few hours, but they lose their activity very quickly and the substrate is not completely degraded,” says HZB expert Gert Weber. This is not a problem in the test tube in the laboratory, but it is when used in a large bioreactor. Together with the biotech company Carbios, Uwe Bornscheuer and Gert Weber show how new enzymes for PET degradation can be better compared with each other. “In order to allow upscaling later, many parameters must be within a narrow range even in laboratory experiments. The starting material must be precisely defined and the test protocols must be more standardised in order to better assess the performance of the enzymes and their application on an industrial scale,” explains Bornscheuer. The researchers have therefore developed a standardised PET hydrolysis protocol that defines reaction conditions relevant for hydrolysis on a larger scale. In particular, two PET materials were used, firstly a defined PET film and secondly PET granulate from waste bottles, as used by Carbios on a technical scale. They used these materials to test four recently discovered PET-decomposing enzymes: LCC-ICCG, FAST-PETase, HotPETase and PES-H1L92F/Q94Y.

When experimenting under this protocol, they found that two of these enzymes, FAST-PETase and HotPETase, were less suitable for large-scale use. This is mainly due to their relatively low depolymerisation rates. PES-H1L92F/Q94Y performed better. The fourth candidate, LCC-ICCG, outperformed the other enzymes by far: LCC-ICCG converts 98% of PET into the monomeric products terephthalic acid (TPA) and ethylene glycol (EG) in 24 hours. “In addition, we were able to reduce the amount of enzyme required for LCC-ICCG by a factor of 3 and the reaction temperature from 72 to 68 °C, which makes the use of this enzyme more economical,” says Bornscheuer.

Higher standards for experiments on PET recycling

“We should think about industrial applications already in our laboratory research,” says Gert Weber. After all, we are dealing with one of the really big problems of our time. Plastics are still being produced again and again from fossil raw materials, recycling rates are low and so far, it has mostly been a case of “downcycling” to inferior quality. Plastic waste can now be found in all bodies of water and soil and thus in the food chain. Progress is therefore urgent. “With these standards, we can do something to separate the wheat from the chaff more quickly.”

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
  • Review on ocular particle therapy (OPT) by international experts
    Science Highlight
    03.09.2024
    Review on ocular particle therapy (OPT) by international experts
    A team of leading experts in medical physics, physics and radiotherapy, including HZB physicist Prof. Andrea Denker and Charité medical physicist Dr Jens Heufelder, has published a review article on ocular particle therapy. The article appeared in the Red Journal, one of the most prestigious journals in the field. It outlines the special features of this form of eye therapy, explains the state of the art and current research priorities, provides recommendations for the delivery of radiotherapy and gives an outlook on future developments.