Collaborative Research Centre “Nanoscale Metals” raises 11 million euros

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben.

Licht wird durch den Nanopartikel fokussiert und die Energie lokal in verschiedene Formen umgewandelt, die dann Chemische Transformation antreiben. © Felix Stete

Several HZB research teams are participating in the new SFB 1636 "Elementary processes of light-driven reactions on nanoscale metals".

Research on Nansoscale Metals

“We are excited and look forward to the new synergies that can arise from this,” says Prof. Matias Bargheer, who is one of the spokespersons for the new Collaborative Research Centre, led by University of Potsdam. The HZB scientists Renske van der Veen, Yan Lu and Alexander Föhlisch are also involved, in addition to the team of Bargheer, who heads a joint research group at the University of Potsdam and HZB.

The research project aims to help understand the elementary processes that trigger light-controlled chemical reactions on metals at the nanoscale. “There are still many unanswered questions at this fascinating transition between physics and chemistry and we can already apply our concepts to organic coupling reactions and polymerisations, e.g. to functionalise nanoparticles asymmetrically,” says Prof. Dr. Matias Bargheer, talking about the struggles as well as the perspectives of their collaborative research.

Antonia Rötger

  • Copy link

You might also be interested in

  • Nanoislands on silicon with switchable topological textures
    Science Highlight
    20.01.2025
    Nanoislands on silicon with switchable topological textures
    Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.
  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.