BESSY II: Experimenteller Nachweis einer exotischen Quantenphase in Au2Pb

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung f&uuml;r Au<sub>2</sub>Pb. Das lineare Verhalten ist der Nachweis f&uuml;r ein Dirac-Semimetall. Zus&auml;tzlich wird ein Lifshitz-&Uuml;bergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.&nbsp;

Die Abbildung zeigt die gemessene Energie-Impuls-Beziehung für Au2Pb. Das lineare Verhalten ist der Nachweis für ein Dirac-Semimetall. Zusätzlich wird ein Lifshitz-Übergang beobachtet: Bei Temperaturen 223 K und darunter verhalten sich die Elektronen wie positiv geladene Teilchen, bei Raumtemperatur dagegen wie negativ geladene.  © HZB

Ein Team am HZB hat die elektronische Struktur von Au2Pb an BESSY II durch winkelaufgelöste Photoemissionsspektroskopie über einen weiten Temperaturbereich untersucht: Die Ergebnisse zeigen die elektronische Struktur eines dreidimensionalen topologischen Dirac-Semimetalls und stehen im Einklang mit theoretischen Berechnungen.

Die experimentellen Daten zeigen die charakteristische Signatur eines Lifshitz-Übergangs. Die Studie erweitert die Palette der derzeit bekannten Materialien, die dreidimensionale Dirac-Phasen aufweisen. Außerdem zeigt der beobachtete Lifshitz-Übergang einen praktikablen Mechanismus auf, mit dem die Ladungsträgerart bei der Stromleitung umgeschaltet werden kann, ohne dass das Material mit Fremdatomen dotiert werden müsste. Zudem wird das Au2Pb als Kandidat für die Realisierung eines topologischen Supraleiters interessant.

Die Studie, die auch theoretische Rechnungen aus San Sebastian und Materialsynthese aus Princeton umfasst, wurde in der Zeitschrift Physical Review Letters als "Editor's Suggestion" ausgewählt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.