BESSY II: Was Ionen durch Polymermembranen treibt

Membran.

Membran. © HZB

Photoelektrolyseure und Elektrolysezellen können grünen Wasserstoff oder fossilfreie Kohlenstoffverbindungen erzeugen – allerdings benötigen sie Ionenaustausch-Membranen. Ein HZB-Team hat nun in einem hybriden Flüssiggas-Elektrolyseur an der Röntgenquelle BESSY II den Transport von Ionen durch die Membran untersucht. Anders als erwartet treiben Konzentrationsunterschiede aber kaum elektrische Felder Ionen an. Die Diffusion ist also der entscheidende Prozess. Diese Erkenntnis könnte bei der Entwicklung hocheffizienter und deutlich umweltfreundlicherer Membranmaterialien helfen.

Ionenaustausch-Membranen werden in (Photo)elektrolyseuren, Brennstoffzellen und Batterien benötigt, um Ionen zu trennen und die gewünschten Prozesse zu ermöglichen. Synthetisch produzierte Polymermembranen wie NAFION sind dabei besonders effizient, aber leider nicht abbaubar. In der Europäischen Union wird derzeit ein Verbot solcher „Ewigkeits-Chemikalien“ diskutiert. Die Entwicklung geeigneter Alternativen ist jedoch eine Herausforderung. Daher ist es wichtig, besser zu verstehen, warum NAFION und andere etablierte Polymermembranen so gut funktionieren.

Ein Team um Dr. Marco Favaro vom HZB-Institut für Solare Brennstoffe hat diese Frage nun mit einer speziellen Art von Elektrolysezelle untersucht. In diesem Zelltyp sitzt die Membran an der Außenwand und steht so sowohl mit dem flüssigen Elektrolyten als auch mit einer gasförmigen äußeren Umgebung in Kontakt. Je nach Polarität des angelegten Potenzials wirkt die Membran entweder als Anode oder als Kathode. Dieser hybride Flüssiggas-Elektrolyseur gilt als besonders vorteilhaft für die elektrochemische Umwandlung von CO2, da in der Gasphase höhere CO2-Konzentrationen möglich sind als in wässrigen Lösungen.

Für die Studie verwendeten Favaro und sein Team handelsübliche Ionenaustauschmembranen in Kontakt mit einem Modellelektrolyten wie Natriumchlorid (NaCl) in Wasser. Der Gasphase wurde Wasserdampf zugeführt. Die Migration von Natrium- und Chloridionen durch die Membranen konnte mit Röntgenphotoelektronenspektroskopie bei Umgebungsdruck (AP-HAXPES) an der SpAnTeX-Endstation an der KMC-1-Beamline von BESSY II untersucht werden. „Wir hatten eigentlich erwartet, dass die Dynamik der Ionen durch die elektrischen Felder zwischen Anode und Kathode des Elektrolyseurs bestimmt wird, und dass die Elektromigration der Hauptfaktor ist“, sagt Marco Favaro.

Ionenaustausch-Membranen sind Schlüsselkomponente

Die Analyse der Daten zeigte jedoch das Gegenteil. Elektromigration spielt kaum eine Rolle, die Ionen diffundieren einfach durch die Membran. Ein Diffusionsmodell simuliert die Daten numerisch perfekt. „Wir folgern daraus, dass Ionen die Polymermembranen in diesen Elektrolyseuren durchdringen, und zwar aufgrund von Sprüngen, die durch die in den Membranen vorhandenen ionisierten funktionellen Gruppen vermittelt werden. Da außerdem auch Wasser durch das Polymer diffundiert, werden die Ionen „mitgeschleppt“, erklärt Favaro.

Diese Ergebnisse sind aus einer Reihe von Gründen interessant. Denn solche hybriden Elektrolyseure ermöglichen es, CO2 in wertvolle Chemikalien umzuwandeln, die sonst nur aus fossilen Brennstoffen gewonnen werden können. Zu verstehen, wie diese Elektrolyseure funktionieren, hilft auf dem Weg zur Dekarbonisierung der Wirtschaft. Dabei sind die Ionenaustausch-Membranen eine Schlüsselkomponente. Die bisher verwendeten Polymerverbindungen sind jedoch nicht abbaubar. Es ist daher überaus wichtig, die relevanten Triebkräfte von Transportprozessen zu verstehen, um neue Membranmaterialien zu entwickeln, die effizient und umweltfreundlich sind. Favaro will dieses Projekt nun am HIPOLE vorantreiben, dem neuen Helmholtz-Institut in Jena, das sich auf die Entwicklung von neuen Polymermaterialien für Energietechnologien konzentriert.

arö


Das könnte Sie auch interessieren

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.
  • Zusammenarbeit mit Korea Institute of Energy Research
    Nachricht
    23.04.2024
    Zusammenarbeit mit Korea Institute of Energy Research
    Am Freitag, den 19. April 2024, haben der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin, Bernd Rech, und der Präsident des Korea Institute of Energy Research (KIER), Yi Chang-Keun, in Daejeon (Südkorea) ein Memorandum of Understanding (MOU) unterzeichnet.