Technologietransfer-Preis: Tandem-Solarzellen näher an die industrielle Pilotproduktion gebracht

Herzlichen Glückwunsch! Der diesjährige HZB-Technologietransfer-Preis geht an Dr. Kári Sveinbjörnsson und Bor Li für die Entwicklung von Tandem-Solarzellen in Kooperation mit einem führenden PV-Hersteller.

Herzlichen Glückwunsch! Der diesjährige HZB-Technologietransfer-Preis geht an Dr. Kári Sveinbjörnsson und Bor Li für die Entwicklung von Tandem-Solarzellen in Kooperation mit einem führenden PV-Hersteller. © S. Zerbe / HZB

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten.

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten. © S. Zerbe / HZB

Tandem-Solarzellen erzielen hohe Wirkungsgrade: Durch die Kombination von zwei verschiedenen Solarzellen-Typen wird mehr Sonnenlicht in Strom umgewandelt. Gemeinsam mit dem PV-Hersteller Qcells entwickelte ein HZB-Team um Dr. Kári Sveinbjörnsson und Bor Li die Technologie so weiter, dass Qcells in den Aufbau einer Pilotlinie für die Entwicklung von Tandem-Zellen in Sachsen-Anhalt investiert hat. Für diesen gelungenen Transfer in die industrielle Anwendung erhielten beide Forschende am 4.10.2023 den mit 5.000 Euro dotierten Technologie-Transferpreis des Helmholtz-Zentrum Berlin.

Tandem-Solarzellen bestehen aus einer Silizium-Solarzelle (Bottom-Zelle) und einer Perowskit-Solarzelle (Top-Zelle). Das Team aus dem HZB setzte dafür eine kommerziell hergestellte Silizium-Zelle der Firma Qcells ein. Da diese bereits am Markt verfügbar sind, ist es für PV-Hersteller attraktiver, in die innovative Tandem-Technologie zu investieren und diese für die Massenproduktion weiterzuentwickeln.

Seit 2018 besteht die Kooperation mit dem Hersteller Qcells. Im Rahmen mehrerer Projekte wurde am HZB eine Pilotlinie für Perowskit-Tandemsolarzellen (KOALA) entwickelt, die speziell auf die Aufskalierung von Perowskit-Silizium-Tandemsolarzellen abzielt. Die Weiterentwicklung der Tandem Technologie in einer industriellen Pilotlinie bei Qcells in Thalheim, Deutschland, wird im Rahmen eines Europäischen Förderprojektes gefördert, bei welchem das HZB als Projektpartner mitwirkt. „Unsere Zusammenarbeit hat nicht nur zu nachweisbaren Ergebnissen geführt, sondern auch die Aufmerksamkeit wichtiger Akteure der PV-Industrie auf sich gezogen“, sagt Kári Sveinbjörnsson. „Wir freuen uns sehr über die Anerkennung, da sehr viele gute Technologietransfer-Projekte im Rennen waren“, ergänzt Bor Li.

Die Preisjury, bestehend aus Mitgliedern des HZB-Industriebeirats, begründete ihre Entscheidung damit, dass das Projekt sehr gut demonstriert, wie durch Technologietransfer schneller Ergebnisse aus Forschung tatsächlich in die Anwendung kommen. Überzeugt habe sie, dass das Projekt bereits zu nennenswerten Investitionen auf beiden Seiten geführt habe.

Insgesamt zehn Wettbewerbsbeiträge haben Forschungsteams aus dem HZB beim diesjährigen Technologietransfer-Preis eingereicht, die die Innovationsstärke des HZB in einem breiten Anwendungsgebiet zeigten. Der zweite Platz ging an ein Team um Dr. Gert Weber. Es entwickelte verbesserte Farbstoffe aus Cyanobakterien, die beispielsweise sicher in Lebensmittel eingesetzt werden können. Ein Team um Dr. Thomas Dittrich erhielt den 3. Preis für ein neu entwickeltes Spektrometer, das für photoelektrische Charakterisierungen von Solarzellen und die Hochleistungselektronik in einem großen Wellenlängenbereich geeignet ist und damit eine Marktlücke schließt. Die Jury zeigte sich bei der Preisverleihung sehr beeindruckt von der Tiefe und Breite der Vorschläge aus dem HZB. Dies bestätige das Bild des HZB als technologische Meisterschmiede.

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.