Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production

Congratulations! This year's HZB Technology Transfer Prize goes to Dr. Kári Sveinbjörnsson and Bor Li for developing tandem solar cells in cooperation with a leading PV manufacturer.

Congratulations! This year's HZB Technology Transfer Prize goes to Dr. Kári Sveinbjörnsson and Bor Li for developing tandem solar cells in cooperation with a leading PV manufacturer. © S. Zerbe / HZB

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten.

Stark im Technologietransfer: Zehn Teams aus dem HZB bewarben sich um den Technologietransfer-Preis – mit einer beeindruckenden Vielfalt an Projekten. © S. Zerbe / HZB

Tandem solar cells achieve high efficiencies: by combining two different types of solar cells, more sunlight is converted into electricity. PV manufacturer Qcells and a HZB team led by Dr. Kári Sveinbjörnsson and Bor Li have developed the technology to an extent, that Qcells invested in setting up a pilot line for the development of tandem cells in Saxony-Anhalt. For this successful transfer into industrial application, both researchers received the Technology Transfer Prize of the Helmholtz-Zentrum Berlin worth 5,000 euros, on 4. October 2023.

Tandem solar cells consist of a silicon solar cell (bottom cell) and a perovskite solar cell (top cell). The team from the HZB used a commercially produced silicon cell from the company Qcells. Since these are already available on the market, it is more attractive for PV manufacturers to invest in the innovative tandem technology and develop it further for mass production.

The cooperation with manufacturer Qcells has existed since 2018. As part of several projects, a pilot line for perovskite tandem solar cells was developed at HZB, which specifically targets the upscaling of perovskite silicon tandem solar cells. The development of tandem technology on a pilot line at Qcells in Thalheim, Germany, is being funded as part of a European funding project in which HZB is involved as a project partner. “Our collaboration has not only led to demonstrable results, but has also attracted the attention of key players in the PV industry,” says Kári Sveinbjörnsson. “We are very happy about the recognition, as there were a lot of good technology transfer projects in the running,” adds Bor Li.

The award jury, consisting of members of the HZB Industry Advisory Board, justified their decision by saying that the project demonstrates very well how technology transfer can bring research results into application more quickly. They were convinced by the fact that the project had already led to significant investments on both sides.

A total of ten competition entries were submitted by research teams from HZB to this year’s Technology Transfer Prize, demonstrating HZB’s innovative strength in a broad range of applications. Second place went to a team led by Dr. Gert Weber. It developed dyes from cyanobacteria that can be safely used in food, for example. A team led by Dr. Thomas Dittrich received third prize for a newly developed spectrometer that is suitable for photoelectric characterisation of solar cells and high-performance electronics in a wide wavelength range, thus closing a gap in the market. At the award ceremony, the jury was very impressed by the variety of the proposals. This confirmed HZB’s image as a technological think tank.

sz

  • Copy link

You might also be interested in

  • BESSY II: New procedure for better thermoplastics
    Science Highlight
    04.11.2024
    BESSY II: New procedure for better thermoplastics
    Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.
  • Hydrogen: Breakthrough in alkaline membrane electrolysers
    Science Highlight
    28.10.2024
    Hydrogen: Breakthrough in alkaline membrane electrolysers
    A team from the Technical University of Berlin, HZB, IMTEK (University of Freiburg) and Siemens Energy has developed a highly efficient alkaline membrane electrolyser that approaches the performance of established PEM electrolysers. What makes this achievement remarkable is the use of inexpensive nickel compounds for the anode catalyst, replacing costly and rare iridium. At BESSY II, the team was able to elucidate the catalytic processes in detail using operando measurements, and a theory team (USA, Singapore) provided a consistent molecular description. In Freiburg, prototype cells were built using a new coating process and tested in operation. The results have been published in the prestigious journal Nature Catalysis.
  • Rutger Schlatmann re-elected as ETIP PV Chair
    News
    24.10.2024
    Rutger Schlatmann re-elected as ETIP PV Chair
    The European Technology and Innovation Platform for Photovoltaics (ETIP PV) was created by the European Commission in order to promote photovoltaic technologies and industries in Europe. Now, the ETIP PV Steering Committee elected a new Chair, as well as two Vice-Chairs for the term 2024 – 2026. Rutger Schlatmann, head of the division Solar Energy at the HZB, and professor at HTW Berlin, was re-elected as the ETIP PV Chair.