Green hydrogen: Improving iridium catalysts with titanium oxides

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen. 

Die Iridium-Atome (rot) sind in unterschiedliche Titanoxide eingebettet, die für mehr Stabilität sorgen.  © Marianne van der Merwe

Anodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a team at HZB and a group at HI-ERN have now produced a so-called material library: a sample in which the concentration of iridium and titanium oxides is systematically varied. Analyses of the individual sample segments at BESSY II in the EMIL laboratory showed that the presence of titanium oxides can increase the stability of the iridium catalyst significantly.

One option for storing energy from sun or wind is the production of “green” hydrogen by electrolysis. Hydrogen stores energy in chemical form and releases it again when burnt, producing no exhaust gases, only water. Today, iridium is the state-of-the-art catalyst for this reaction. However, iridium increasingly dissolves in the acidic environment of the electrolysis cell, so that the catalytic effect quickly wanes.

“We wanted to investigate whether the stability of the catalyst can be improved by adding different proportions of titanium oxide,” says Prof Dr Marcus Bär (HZB). Although titanium oxide is not catalytically active, it is very stable. “We had some indications that the presence of titanium oxide would have a positive effect on stability without influencing the catalytic effect of the iridium. But we also wanted to find out whether there is an ideal mixing ratio.”

The sample as a materials library

The sample was produced at the Helmholtz Institute Erlangen-Nuremberg for Renewable Energies (HI-ERN) in Prof Dr Olga Kasian’s team by sputtering titanium and iridium with locally varying compositions. It is a so-called thin-film materials library on which the iridium content varies from 20% to 70%

At BESSY II, the team used X-ray spectroscopic methods to analyse how the chemical structure changes depending on the iridium content of the mixed iridium-titanium oxide samples. Several effects played a role here: for instance, the presence of titanium suboxides (such as TiO and TiOx) improved the conductivity of the material. Another exciting result was that some of the titanium oxides dissolve faster in the aqueous electrolyte than iridium, creating micropores on the surface. This promoted the oxygen evolution reaction because more iridium atoms from the lower layers come into contact with the electrolyte.

The main effect, however, is that titanium oxides (TiO2, as well as TiO and TiOx) significantly reduce the dissolution of iridium. “In the sample with 30 % titanium added compared to a pure iridium electrode material, we saw an iridium resolution that was approximately 70 % lower,” says Marianne van der Merwe, who carried out the measurements as part of her doctorate with Marcus Bär.

High relevance for practical use

But how relevant are such results from laboratory research for industry? “If there are already established technologies, it’s always difficult to change anything at first,” says Marcus Bär. “But here we show how the stability of the anodes can be significantly increased with a manageable amount of effort.”


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.