Spintronics: X-ray microscopy unravels the nature of domain walls

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ.

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ. © HZB

Magnetic skyrmions are tiny vortices of magnetic spin textures. In principle, materials with skyrmions could be used as spintronic devices, for example as very fast and energy-efficient data storage devices. But at the moment it is still difficult to control and manipulate skyrmions at room temperature. A new study at BESSY II analyses the formation of skyrmions in ferrimagnetic thin films of dysprosium and cobalt in real time and with high spatial resolution. This is an important step towards characterising suitable materials with skyrmions more precisely in the future.

Isolated magnetic skyrmions are topologically protected spin textures that are in the focus of research interest today. Also because of their potential applications in information technology. Skyrmions of particular interest occur in ferrimagnetic rare earth-transition metal (RE-TM) materials. They exhibit tunable ferromagnetic properties with antiferromagnetically coupled sublattices. By choosing elements from the rare earth and transition metal group, they provide a playground for controlling magnetisation and perpendicular magnetic anisotropy. These are key parameters for stabilising topological ferrimagnetic textures

Determining spin structures at BESSY II

One class of ferrimagnetic alloys has a stronger perpendicular magnetic anisotropy, including a compound of dysprosium (Dy) and cobalt (Co). These materials could store information in a much more stable way. But their magnetic properties and structures have hardly been studied so far. A team led by HZB physicist Dr. Florin Radu has now analysed DyCo3 samples using X-ray microscopy methods at BESSY II and determined the spin structures.

They used scanning transmission X-ray microscopy with both X-ray magnetic circular dichroism and X-ray magnetic linear dichroism as element specific contrast mechanisms. The key feature exploited here is that the linear dichroism of RE materials is much stronger than that of the TM materials. “This allowed us to directly observe isolated ferrimagnetic skyrmions in high density and to accurately determine their domain wall type,” Radu reports. The results show that the ferrimagnetic skyrmions are of the Néel type and can be clearly distinguished from the other domain walls, the Bloch walls. Thus, for the first time, the type of domain walls can now be reliably determined by X-ray investigations. This is an important step towards the application of this interesting class of materials for real spintronic devices.

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • "BESSY is of immense importance for Berlin"
    News
    02.09.2024
    "BESSY is of immense importance for Berlin"
    At the end of August, the Senator for Research, Health, and Long-Term Care, Dr Ina Czyborra, together with the State Secretary for Science, Dr Henry Marx, ended her summer tour with a visit to HZB in Adlershof. She publicly declared her political support for the new construction of BESSY III.

  • Langbeinites show talents as 3D quantum spin liquids
    Science Highlight
    23.08.2024
    Langbeinites show talents as 3D quantum spin liquids
    A 3D quantum spin liquid has been discovered in the vicinity of a member of the langbeinite family. The material's specific crystalline structure and the resulting magnetic interactions induce an unusual behaviour that can be traced back to an island of liquidity. An international team has made this discovery with experiments at the ISIS neutron source and theoretical modelling on a nickel-langbeinite sample.