Spintronics: X-ray microscopy unravels the nature of domain walls

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ.

Die beiden oberen Reihen zeigen den erwarteten magnetischen Bildkontrast für Skyrmionen vom Bloch- und Néel-Typ bei Verwendung von zirkular, linear horizontal (LH) und linear vertikal (LV) polarisierter Röntgenstrahlung. Die Ergebnisse der experimentellen Raster-Transmissions-Röntgenmikroskopie (STXM) sind in der unteren Reihe dargestellt, sie entsprechen der Simulation der Skyrmionen vom Néel-Typ. © HZB

Magnetic skyrmions are tiny vortices of magnetic spin textures. In principle, materials with skyrmions could be used as spintronic devices, for example as very fast and energy-efficient data storage devices. But at the moment it is still difficult to control and manipulate skyrmions at room temperature. A new study at BESSY II analyses the formation of skyrmions in ferrimagnetic thin films of dysprosium and cobalt in real time and with high spatial resolution. This is an important step towards characterising suitable materials with skyrmions more precisely in the future.

Isolated magnetic skyrmions are topologically protected spin textures that are in the focus of research interest today. Also because of their potential applications in information technology. Skyrmions of particular interest occur in ferrimagnetic rare earth-transition metal (RE-TM) materials. They exhibit tunable ferromagnetic properties with antiferromagnetically coupled sublattices. By choosing elements from the rare earth and transition metal group, they provide a playground for controlling magnetisation and perpendicular magnetic anisotropy. These are key parameters for stabilising topological ferrimagnetic textures

Determining spin structures at BESSY II

One class of ferrimagnetic alloys has a stronger perpendicular magnetic anisotropy, including a compound of dysprosium (Dy) and cobalt (Co). These materials could store information in a much more stable way. But their magnetic properties and structures have hardly been studied so far. A team led by HZB physicist Dr. Florin Radu has now analysed DyCo3 samples using X-ray microscopy methods at BESSY II and determined the spin structures.

They used scanning transmission X-ray microscopy with both X-ray magnetic circular dichroism and X-ray magnetic linear dichroism as element specific contrast mechanisms. The key feature exploited here is that the linear dichroism of RE materials is much stronger than that of the TM materials. “This allowed us to directly observe isolated ferrimagnetic skyrmions in high density and to accurately determine their domain wall type,” Radu reports. The results show that the ferrimagnetic skyrmions are of the Néel type and can be clearly distinguished from the other domain walls, the Bloch walls. Thus, for the first time, the type of domain walls can now be reliably determined by X-ray investigations. This is an important step towards the application of this interesting class of materials for real spintronic devices.

arö

  • Copy link

You might also be interested in

  • Nanoislands on silicon with switchable topological textures
    Science Highlight
    20.01.2025
    Nanoislands on silicon with switchable topological textures
    Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.
  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.