Quantencomputer: Gewissheit aus dem Zufall ziehen

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer werden mit zunehmender Größe und Komplexität undurchschaubar. Mit Methoden der mathematischen Physik ist es nun einem Team gelungen, aus zufälligen Datensequenzen konkrete Zahlen abzuleiten, die als Maßstab für die Leistungsfähigkeit eines Quantencomputersystems dienen können. An der Arbeit mit Quantencomputer, die nun in Nature communications veröffentlicht ist, waren Experten des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, des Qusoft Forschungszentrum Amsterdam, der Universität Kopenhagen sowie des Technology Innovation Institute Abu Dhabi beteiligt.

Mit Quantencomputern lassen sich insbesondere Quantensysteme deutlich effizienter berechnen und zum Beispiel Probleme in der Materialforschung lösen. Je größer und komplexer jedoch Quantencomputer werden, desto weniger lassen sich die Prozesse durchschauen, die zum Ergebnis führen. Um solche Quantenoperationen zu charakterisieren und die Fähigkeiten von Quantencomputern mit der klassischen Rechenleistung bei denselben Aufgaben fair zu vergleichen, werden daher passende Werkzeuge gebraucht. Ein solches Werkzeug mit überraschenden Talenten hat nun ein Team um Prof. Jens Eisert und Ingo Roth entwickelt.

Benchmarking von Quantencomputern

Roth, der aktuell am Technology Innovation Institute in Abu Dhabi eine Gruppe aufbaut, erläutert: „Aus den Ergebnissen zufällig gewählter Experimente können wir mit mathematischen Methoden nun viele verschiedene Zahlen extrahieren, die zeigen, wie nah die Operationen im statistischen Mittel an den gewünschten Operationen sind. Damit kann man aus den gleichen Daten viel mehr lernen als zuvor. Und zwar – das ist das Entscheidende – wächst die benötigte Datenmenge nicht linear sondern nur logarithmisch.“ Dies konnte das Team sogar mathematisch beweisen. Konkret bedeutet das: Um hundertmal so viel zu lernen, werden nur doppelt so viel Daten gebraucht. Eine enorme Verbesserung.

Eisert, der eine gemeinsame Forschungsgruppe zu theoretischer Physik am Helmholtz-Zentrum Berlin und der Freien Universität Berlin leitet, sagt: „Es geht hier um das Benchmarking von Quantencomputern. Wir haben gezeigt, wie man mit randomisierten Daten solche Systeme kalibrieren kann. Das ist eine sehr wichtige Arbeit für die Entwicklung von Quantencomputern.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.