Quantencomputer: Gewissheit aus dem Zufall ziehen

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer (hier ein Experiment am Technology Innovation Institute in Abu Dhabi) arbeiten bei sehr niedrigen Temperaturen, um Rauschen und unerwünschte Störungen zu minimieren. Mit einem neu entwickelten mathematischen Werkzeug ist es nun möglich, die Leistung eines Quantencomputers durch zufällige Testdaten zu bewerten und mögliche Fehler zu diagnostizieren.

Quantencomputer werden mit zunehmender Größe und Komplexität undurchschaubar. Mit Methoden der mathematischen Physik ist es nun einem Team gelungen, aus zufälligen Datensequenzen konkrete Zahlen abzuleiten, die als Maßstab für die Leistungsfähigkeit eines Quantencomputersystems dienen können. An der Arbeit mit Quantencomputer, die nun in Nature communications veröffentlicht ist, waren Experten des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, des Qusoft Forschungszentrum Amsterdam, der Universität Kopenhagen sowie des Technology Innovation Institute Abu Dhabi beteiligt.

Mit Quantencomputern lassen sich insbesondere Quantensysteme deutlich effizienter berechnen und zum Beispiel Probleme in der Materialforschung lösen. Je größer und komplexer jedoch Quantencomputer werden, desto weniger lassen sich die Prozesse durchschauen, die zum Ergebnis führen. Um solche Quantenoperationen zu charakterisieren und die Fähigkeiten von Quantencomputern mit der klassischen Rechenleistung bei denselben Aufgaben fair zu vergleichen, werden daher passende Werkzeuge gebraucht. Ein solches Werkzeug mit überraschenden Talenten hat nun ein Team um Prof. Jens Eisert und Ingo Roth entwickelt.

Benchmarking von Quantencomputern

Roth, der aktuell am Technology Innovation Institute in Abu Dhabi eine Gruppe aufbaut, erläutert: „Aus den Ergebnissen zufällig gewählter Experimente können wir mit mathematischen Methoden nun viele verschiedene Zahlen extrahieren, die zeigen, wie nah die Operationen im statistischen Mittel an den gewünschten Operationen sind. Damit kann man aus den gleichen Daten viel mehr lernen als zuvor. Und zwar – das ist das Entscheidende – wächst die benötigte Datenmenge nicht linear sondern nur logarithmisch.“ Dies konnte das Team sogar mathematisch beweisen. Konkret bedeutet das: Um hundertmal so viel zu lernen, werden nur doppelt so viel Daten gebraucht. Eine enorme Verbesserung.

Eisert, der eine gemeinsame Forschungsgruppe zu theoretischer Physik am Helmholtz-Zentrum Berlin und der Freien Universität Berlin leitet, sagt: „Es geht hier um das Benchmarking von Quantencomputern. Wir haben gezeigt, wie man mit randomisierten Daten solche Systeme kalibrieren kann. Das ist eine sehr wichtige Arbeit für die Entwicklung von Quantencomputern.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.