Röntgentomoskopie: Wie sich beim Gefrierguss komplexe Strukturen bilden

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.

Das 3D-Tomogramm zeigt einen Querschnitt durch die erstarrte Probe, in der sich zwei Phasen voneinander getrennt haben: die Eiskristallphase in blau und die Zuckerphase in rot. Die lamellare Struktur wurde von den Eiskristallen geformt.

Mit Gefriergussverfahren lassen sich hochporöse und hierarchisch strukturierte Materialien herstellen, die eine große Oberfläche aufweisen. Sie eignen sich für unterschiedlichste Anwendungen, als Elektroden für Batterien, Katalysatormaterialien oder in der Biomedizin. Nun hat ein Team um Prof. Ulrike G. K. Wegst, Northeastern University, Boston, MA, USA, und Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin an der Swiss Light Source des Paul-Scherrer-Instituts mit dem neu entwickelten Verfahren der Röntgentomoskopie erstmals in Echtzeit und hoher Auflösung beobachtet, wie der Prozess der Strukturbildung beim Gefriergussverfahren abläuft. Als Modellsystem diente eine Zuckerlösung.

Gefriergussverfahren benötigen mehrere Schritte: Zunächst wird eine Substanz in einem Lösungsmittel gelöst oder aufgeschwemmt und daraufhin in einer Kühlzelle mit einer am Boden angelegten Kühlrate eingefroren (gerichtetes Gefrieren). Nach dem Gefrieren wird das kristallisierte Lösungsmittel durch Sublimation entfernt. Übrig bleiben die vormals gelöste Substanz und aufgeschwemmte Partikel, die die Zellwände einer komplexen, hochporösen Architektur bilden.

Gefriergegossene Werkstoffe lassen sich für viele Einsatzbereiche nutzen

Aufgrund ihrer enormen inneren Oberflächen eignen sie sich als Batterieelektroden oder Katalysatoren. Ihre gerichtete Porenstruktur ermöglicht aber auch biomedizinische Anwendungen, zum Beispiel als Gerüststrukturen zur Regeneration von Nervenbahnen. Wie aber der Prozess der hierarchischen Strukturbildung beim Gefrieren im Detail abläuft, und wie sich die gewünschte wabenartige, gerichtete Porosität und die Zellwände mit ihren Oberflächenstrukturen bilden, blieb bisher im Dunkeln.

Dr. Francisco García Moreno vom Helmholtz-Zentrum Berlin hat zusammen mit seinem Team eine Methode entwickelt, mit der sich diese Prozesse genau beobachten lassen. „Mit der Röntgentomoskopie können wir den Mechanismus der Strukturbildung in situ mit hoher räumlicher und zeitlicher Auflösung abbilden und dabei sogar flüchtige Phänomene und Übergangsstrukturen beobachten“, erklärt der Physiker.

Gefriergießen: hohe Leistungsfähigkeit der Methode bewiesen

Mit einem ultraschnellen Drehtisch, intensiver Röntgenstrahlung sowie einem extrem schnellen Detektor und Software für die rasche Auswertung der Röntgendaten hat das HZB-Team gemeinsam mit Kollegen an der Swiss Light Source des Paul-Scherrer-Instituts das Gefriergießen an einem Modellsystem untersucht und die hohe Leistungsfähigkeit der Methode bewiesen. „Für diese Studie haben wir eine neue Messzelle mit Sensoren entwickelt, um den Temperaturgradienten genau zu erfassen“, sagt Dr. Paul Kamm (HZB), Erstautor der Studie. Pro Sekunde entstand ein 3D-Tomogramm mit einer räumlichen Auflösung von 6 µm. Über 270 Sekunden ließ sich der gesamte Prozess des Gefrierens dokumentieren.

Prof. Ulrike G. K. Wegst von der Northeastern University, USA, hatte vorgeschlagen, als polymeres Modellsystem eine wässrige Zuckerlösung zu untersuchen, weil erstens wässrige Lösungen noch immer im Gefriergussverfahren dominieren, und zweitens sich ihr Verhalten gut rechnerisch simulieren lässt. „Wir konnten nun erstmals experimentell beobachten wie die Eiskristalle aus der Lösung gerichtet wachsen“, sagt Wegst. „Dabei dokumentieren die Aufnahmen, wie sich Instabilitäten beim Kristallwachstum bilden, und wie diese die Zuckerphase formen. Dabei entstehen charakteristische, organisch wirkende Strukturen, die an Quallen und Tentakel erinnern.“ Interessant ist auch, dass einige dieser Strukturen teilweise wieder verschwinden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.