Grüner Wasserstoff: Perowskit-Oxid-Katalysatoren im Röntgenstrahl

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO<sub>3</sub> Perowskitfilm (gr&uuml;n), aufgewachsen auf einem Substrat (braun). Rechts ist die vergr&ouml;&szlig;erte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Pl&auml;tzen) aus Simulationen dargestellt.

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO3 Perowskitfilm (grün), aufgewachsen auf einem Substrat (braun). Rechts ist die vergrößerte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Plätzen) aus Simulationen dargestellt. © UDE/AG Pentcheva

Für die Herstellung von Grünem Wasserstoff sind Katalysatoren nötig, die den Prozess der Wasserspaltung in Sauerstoff und Wasserstoff steuern. Doch unter Spannung verändert sich die Struktur des Katalysators, was auch die katalytische Aktivität beeinflusst. Ein Forschungsteam aus den Universitäten in Duisburg-Essen und Twente hat u.a. an BESSY II untersucht, wie die Umwandlung von Oberflächen in Perowskit-Oxid-Katalysatoren die Aktivität der Sauerstoffentwicklungsreaktion steuert.

In einem klimaneutralen Energiesystem der Zukunft sorgen vor allem Sonne und Wind für die Bereitstellung von Strom. Ein Teil des „grünen“ Stroms kann für die elektrolytische Aufspaltung von Wasser genutzt werden, um „grünen“ Wasserstoff zu erzeugen. Wasserstoff ist ein effizienter Energiespeicher und ein wertvoller Rohstoff für die Industrie. Bei der Elektrolyse werden Katalysatoren eingesetzt, die die gewünschte Reaktion beschleunigen und den Prozess effizienter machen. Dabei werden für die Wasserstoff-Abscheidung andere Katalysatoren verwendet als für die Sauerstoff-Entwicklung, beide aber sind notwendig.

Perowskit-Oxid-Katalysatoren: preiswert und mit viel Potenzial

Eine interdisziplinäre und internationale Forschergruppe der Universität Essen-Duisburg, der Universität Twente, Forschungszentrum Jülich, sowie HZB hat nun die Klasse von Perowskit-Oxid-Katalysatoren für die Sauerstoff-Entwicklungs-Reaktion eingehend untersucht. Perowskit-Oxid-Katalysatoren sind in den letzten Jahren deutlich weiterentwickelt worden, sie sind preiswert und besitzen das Potenzial für weitere Steigerungen der katalytischen Effizienz. Allerdings zeigen sich binnen kurzer Zeit an den Oberflächen dieser Materialien Veränderungen, die die katalytische Wirkung mindern.

Spektroskopie an BESSY II

Daher hat die Gruppe nun insbesondere die Oberflächenstruktur eingehend untersucht und die experimentellen Daten mit Dichtefunktionalberechnungen abgeglichen. Das Team um den HZB-Forscher Dr. Marcel Risch führte dazu spektroskopische Analysen an der Röntgenquelle BESSY II durch. „Wir konnten feststellen, dass eine bestimmte Oberflächenfacette deutlich aktiver und gleichzeitig stabiler ist als andere. Durch die Röntgenanalyse können wir verstehen, wie man den traditionellen Kompromiss zwischen Aktivität und Stabilität überwinden kann“, sagt Risch. Die Ergebnisse zeigen auch, wie sich bestimmte Oberflächenfacetten umwandeln und wo sich beispielsweise Wasserstoffatome (bzw. Protonen) anlagern.

Diese Einblicke in Umwandlungsprozesse und strukturelle Umwandlungen und chemische Prozesse an den unterschiedlichen Facetten der untersuchten Proben sind wertvoll: Sie tragen dazu bei, gezielt und wissensbasiert Materialien als Elektrokatalysatoren zu designen. Denn Elektrokatalysatoren sind der Schlüssel für sehr viele Anwendungen in der grünen Chemie.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.