Grüner Wasserstoff: Perowskit-Oxid-Katalysatoren im Röntgenstrahl

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO<sub>3</sub> Perowskitfilm (gr&uuml;n), aufgewachsen auf einem Substrat (braun). Rechts ist die vergr&ouml;&szlig;erte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Pl&auml;tzen) aus Simulationen dargestellt.

Schematische Ansicht der transformierten Schicht (hellgrau) auf dem LaNiO3 Perowskitfilm (grün), aufgewachsen auf einem Substrat (braun). Rechts ist die vergrößerte Seitenansicht der transformierten Oxyhydroxid-Schicht (mit Spindichte an den Ni-Plätzen) aus Simulationen dargestellt. © UDE/AG Pentcheva

Für die Herstellung von Grünem Wasserstoff sind Katalysatoren nötig, die den Prozess der Wasserspaltung in Sauerstoff und Wasserstoff steuern. Doch unter Spannung verändert sich die Struktur des Katalysators, was auch die katalytische Aktivität beeinflusst. Ein Forschungsteam aus den Universitäten in Duisburg-Essen und Twente hat u.a. an BESSY II untersucht, wie die Umwandlung von Oberflächen in Perowskit-Oxid-Katalysatoren die Aktivität der Sauerstoffentwicklungsreaktion steuert.

In einem klimaneutralen Energiesystem der Zukunft sorgen vor allem Sonne und Wind für die Bereitstellung von Strom. Ein Teil des „grünen“ Stroms kann für die elektrolytische Aufspaltung von Wasser genutzt werden, um „grünen“ Wasserstoff zu erzeugen. Wasserstoff ist ein effizienter Energiespeicher und ein wertvoller Rohstoff für die Industrie. Bei der Elektrolyse werden Katalysatoren eingesetzt, die die gewünschte Reaktion beschleunigen und den Prozess effizienter machen. Dabei werden für die Wasserstoff-Abscheidung andere Katalysatoren verwendet als für die Sauerstoff-Entwicklung, beide aber sind notwendig.

Perowskit-Oxid-Katalysatoren: preiswert und mit viel Potenzial

Eine interdisziplinäre und internationale Forschergruppe der Universität Essen-Duisburg, der Universität Twente, Forschungszentrum Jülich, sowie HZB hat nun die Klasse von Perowskit-Oxid-Katalysatoren für die Sauerstoff-Entwicklungs-Reaktion eingehend untersucht. Perowskit-Oxid-Katalysatoren sind in den letzten Jahren deutlich weiterentwickelt worden, sie sind preiswert und besitzen das Potenzial für weitere Steigerungen der katalytischen Effizienz. Allerdings zeigen sich binnen kurzer Zeit an den Oberflächen dieser Materialien Veränderungen, die die katalytische Wirkung mindern.

Spektroskopie an BESSY II

Daher hat die Gruppe nun insbesondere die Oberflächenstruktur eingehend untersucht und die experimentellen Daten mit Dichtefunktionalberechnungen abgeglichen. Das Team um den HZB-Forscher Dr. Marcel Risch führte dazu spektroskopische Analysen an der Röntgenquelle BESSY II durch. „Wir konnten feststellen, dass eine bestimmte Oberflächenfacette deutlich aktiver und gleichzeitig stabiler ist als andere. Durch die Röntgenanalyse können wir verstehen, wie man den traditionellen Kompromiss zwischen Aktivität und Stabilität überwinden kann“, sagt Risch. Die Ergebnisse zeigen auch, wie sich bestimmte Oberflächenfacetten umwandeln und wo sich beispielsweise Wasserstoffatome (bzw. Protonen) anlagern.

Diese Einblicke in Umwandlungsprozesse und strukturelle Umwandlungen und chemische Prozesse an den unterschiedlichen Facetten der untersuchten Proben sind wertvoll: Sie tragen dazu bei, gezielt und wissensbasiert Materialien als Elektrokatalysatoren zu designen. Denn Elektrokatalysatoren sind der Schlüssel für sehr viele Anwendungen in der grünen Chemie.

arö


Das könnte Sie auch interessieren

  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Nachricht
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.