Fokussierte Ionenstrahlen: Ein Werkzeug für viele Zwecke

Mit fokussierten Ionenstrahlen lassen sich Materialien analysieren, strukturieren oder optimieren - dies ermöglicht eine große Bandbreite an Einsatzmöglichkeiten. Einen Überblick und eine Roadmap für künftige Entwicklungen vermittelt die Publikation aus dem Fit4Nano-Projekt.

Mit fokussierten Ionenstrahlen lassen sich Materialien analysieren, strukturieren oder optimieren - dies ermöglicht eine große Bandbreite an Einsatzmöglichkeiten. Einen Überblick und eine Roadmap für künftige Entwicklungen vermittelt die Publikation aus dem Fit4Nano-Projekt. © N. Klingner/HZDR, Katja Höflich/HZB

Materialien auf der Nanoskala bearbeiten, Prototypen für die Mikroelektronik fertigen oder biologische Proben analysieren: Die Bandbreite für den Einsatz von fein fokussierten Ionenstrahlen ist riesig. Einen Überblick über die vielfältigen Möglichkeiten und eine Roadmap für die Zukunft haben Expert*innen aus der EU-Kooperation FIT4NANO nun gemeinsam erarbeitet. Der Beitrag ist in Applied Physics Review publiziert und richtet sich an Studierende, Anwender*innen aus Industrie und Wissenschaft sowie die Forschungspolitik.


„Uns war klar, dass man fokussierte Ionenstrahlen sehr vielseitig einsetzen kann, und wir dachten zu Beginn des Projekts, dass wir schon einen guten Überblick hätten. Doch dann haben wir entdeckt, dass es noch weit mehr Anwendungen gibt, als uns bewusst war. In vielen Publikationen wird die Nutzung fokussierter Ionenstrahlen gar nicht explizit erwähnt, sondern findet sich im Methodenteil versteckt. Das war Detektivarbeit“, berichtet Dr. Katja Höflich, Physikerin am Ferdinand-Braun-Institut und am Helmholtz-Zentrum Berlin (HZB), die den umfangreichen Bericht koordiniert hat. „Insbesondere fanden wir Arbeiten aus den 1960er und 1970er Jahren, die damals ihrer Zeit voraus gewesen sind und zu Unrecht in der Versenkung verschwunden sind. Auch heute noch liefern sie wichtige Erkenntnisse.“

Der Bericht gibt einen Überblick über den aktuellen Stand rund um fein fokussierte Ionenstrahlen (Focused Ion Beam – FIB): Technologie, Anwendungen mit vielen Beispielen, die wichtigsten Geräteentwicklungen und Zukunftsperspektiven. „Wir wollten ein Nachschlagewerk bereitstellen, das für die akademische Forschung und die F&E-Abteilungen der Industrie nützlich ist, aber auch dem Forschungsmanagement hilft, sich in diesem Feld zu orientieren“, sagt Dr. Gregor Hlawacek, Gruppenleiter am Institut für Ionenstrahlphysik und Materialforschung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR). Hlawacek leitet das Vorhaben FIT4NANO, ein EU-Projekt zu FIB-Technologien, in dem die Autor*innen des Berichts mitarbeiten.

Von der Grundlagenforschung bis zum fertigen Bauteil

FIB-Instrumente verwenden einen fokussierten Ionenstrahl mit typischerweise zwei bis 30 Kiloelektronenvolt (keV). Solch ein Ionenstrahl rastert mit seinem geringen Durchmesser im Nano- und Subnanometer-Bereich die Probe ab und kann deren Oberfläche nanometergenau verändern. Das macht ihn zu einem universellen Werkzeug für Analysen, maskenlose lokale Materialveränderungen oder schnelles Prototyping von mikroelektronischen Bauelementen. Die ersten FIB-Instrumente wurden in der Halbleiterindustrie eingesetzt, um mit fokussierten Gallium-Ionen Fotomasken zu korrigieren. Heute gibt es FIB-Anlagen mit vielen unterschiedlichen Ionensorten. Eine wichtige Anwendung ist die Präparation von Proben für hochaufgelöste, nanometergenaue Bildgebungsverfahren unter dem Elektronenmikroskop. Auch die Lebenswissenschaften nutzen FIB-Methoden, zum Beispiel zur Analyse und Darstellung von Mikro-Organismen und Viren mit FIB-basierter Tomographie, die tiefe Einblicke in mikroskopische Strukturen und deren Funktion erlaubt.

FIB-Instrumente entwickeln sich stetig weiter, hin zu anderen Energien, schwereren Ionen und neuen Möglichkeiten, wie der ortsaufgelösten Erzeugung einzelner atomarer Defekte in ansonsten perfekten Kristallen. Eine solche Bearbeitung von Materialien und Bauelementen mit FIB hat enormes Potential in der Quanten- und Informationstechnologie. Diese Bandbreite von Anwendungen von der Grundlagenforschung bis zum fertigen Bauteil, von Physik über Materialwissenschaften und Chemie bis hin zu den Lebenswissenschaften oder sogar zur Archäologie ist absolut einzigartig. „Wir hoffen, dass unsere Roadmap wissenschaftliche und technologische Durchbrüche inspirieren kann und wie ein Inkubator für künftige Entwicklungen wirkt“, sagt Gregor Hlawacek.

arö


Das könnte Sie auch interessieren

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.
  • BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Science Highlight
    07.02.2024
    BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.