BESSY II: Molecular orbitals determine stability

Molecular geometry structures of the trans- and cis-isomers fumarate and maleate (above, left to right) together with their hydrogenated molecule, succinate  dianions (below).

Molecular geometry structures of the trans- and cis-isomers fumarate and maleate (above, left to right) together with their hydrogenated molecule, succinate  dianions (below). © HZB

Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.

Carboxylic acid dianions of the type C4H2O4 or C4H4O4 (fumarate, maleate and succinate) can have different geometries (cis or trans) and different properties. Some variants are key in coordination chemistry, incorporating metallic elements into organic compounds, other variants play a role in biological processes. Fumarate and succinate, for example, are formed as intermediate products in the mitochondria of cells. Maleate, on the other hand, which is usually not formed in natural processes, is used in industrial applications that require durable materials. For environmental reasons, however, the question arises as to whether these compounds last forever or are biodegradable.

The stability of fumarate, maleate and succinate dianions is not only influenced by their molecular geometries, but also by the electronic structure of the molecules, in particular the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). However, the influence of the molecular orbitals on stability of these molecules has not been researched.

RIXS and XAS at BESSY II

Now, a team at HZB led by Prof. Alexander Föhlisch has elucidated the influence of the electronic structure on the stability of fumarate, maleate and succinate dianions. “We analysed these compounds at BESSY II with two different, very powerful methods,” says Dr Viktoriia Savchenko, first author of the study. X-ray absorption spectroscopy (XAS) can be used to investigate the unoccupied electronic states of a system, while resonant inelastic X-ray scattering (RIXS) provides information about the occupied highest orbitals and about interactions between the HOMO-LUMO orbitals. The results can be related to macroscopic properties, especially stability.

Maleate potentially less stable

The analysis of the spectral data shows that maleate is potentially less stable than fumarate and succinate. What’s more: The analysis also explains why: The electronic density in the HOMO orbital at the C=C bond between carboxylate groups could lead to weaker binding of maleate with molecules or ions. Fumarate and succinate, on the other hand, could be more stable, as their HOMO orbitals are equally delocalised.

“This means that there is a chance that maleate could be degraded by certain substances,” says Savchenko.

 

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HZB magazine lichtblick - the new issue is out!
    News
    09.07.2024
    HZB magazine lichtblick - the new issue is out!
    In his search for the perfect catalyst, HZB researcher Robert Seidel is now getting a tailwind – thanks to a ERC Consolidator Grant. In the cover story, we explain why the X-ray source BESSY II plays an important role for his research.