14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik

Die hellen Kugeln symbolisieren gebundene Ladungsträger (negative und positive) im Material. Der Lichtstrahl trennt diese Ladungen, die daraufhin im angelegten Magnetfeld auf unterschiedliche Weise abgelenkt werden. Mit der CLIMAT-Methode lassen sich mit einer Messung rund 14 verschiedene Parameter der Transporteigenschaften in Halbleitern messen, zum Beispiel Anzahl und Dichte, Lebenszeit, Diffusionslängen, und Mobilität.

Die hellen Kugeln symbolisieren gebundene Ladungsträger (negative und positive) im Material. Der Lichtstrahl trennt diese Ladungen, die daraufhin im angelegten Magnetfeld auf unterschiedliche Weise abgelenkt werden. Mit der CLIMAT-Methode lassen sich mit einer Messung rund 14 verschiedene Parameter der Transporteigenschaften in Halbleitern messen, zum Beispiel Anzahl und Dichte, Lebenszeit, Diffusionslängen, und Mobilität. © Laura Canil

Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 

Solarzellen, Transistoren, Detektoren, Sensoren und LEDs haben eine Gemeinsamkeit: Sie bestehen aus Halbleitermaterialien, deren Ladungsträger erst durch Bestrahlung mit Licht (Photonen) freigesetzt werden. Die Photonen lösen Elektronen (negative Ladungsträger) aus ihren Orbitalen heraus, die sich durch das Material bewegen, bis sie nach einer Zeit wieder eingefangen werden. Zeitgleich entstehen „Löcher“ an den Stellen, wo die Elektronen fehlen – diese Löcher verhalten sich wie positiv geladene Ladungsträger und sind für die Leistungsfähigkeit der jeweiligen Anwendung ebenfalls wichtig. Das Verhalten der negativen wie positiven Ladungsträger in Halbleitern unterscheidet sich oft um Größenordnungen, von der Mobilität über die Diffusionslängen bis hin zur Lebenszeit. Bisher mussten die Parameter der Transporteigenschaften für jeden Ladungstyp extra ermittelt werden und erforderten darüber hinaus unterschiedliche Messmethoden.

Hall-Effekt raffiniert genutzt

Der HZB-Physiker Dr. Artem Musiienko hat nun im Rahmen seiner „Maria Skłodowska Curie Postdoctoral Fellowship“ eine neue Methode entwickelt, die in einer Messung alle 14 Parameter der positiven wie negativen Ladungsträger erfassen kann. Dafür nutzt er ein Magnetfeld, das senkrecht durch die Probe dringt und eine konstante Lichtquelle für die Ladungstrennung. Die freigesetzten Ladungen wandern entlang eines elektrischen Felds und werden durch das Magnetfeld senkrecht zu ihrer Bewegungsrichtung abgelenkt, wobei ihre Masse, ihre Mobilität und weitere Eigenschaften eine Rolle spielen. Aus den Signalen und insbesondere auch den Differenzen zwischen den Signalen der unterschiedlichen Ladungsträger lassen sich insgesamt 14 verschiedene Eigenschaften ermitteln, zeigte Musiienko mit einem übersichtlichen System aus Gleichungen.

Ladungstransport durchleuchtet

„Damit bietet CLIMAT mit einer Messung einen umfassenden Einblick in die komplizierten Mechanismen des Ladungstransports, sowohl der positiven wie der negativen Ladungsträger. Wir können das nutzen, um neuartige Halbleitermaterialien viel schneller einzuschätzen, zum Beispiel auf ihre Eignung als Solarzellen oder für andere Anwendungen“, meint Musiienko.

Unterschiedliche Halbleiter analysiert

Um die breite Anwendbarkeit zu demonstrieren, haben Forschungsteams am HZB, der Universität Potsdam und weiteren Einrichtungen in den USA, Schweiz, England und Ukraine nun insgesamt zwölf sehr unterschiedliche Halbleitermaterialien mit dieser Methode charakterisiert, darunter das klassische Silizium, Halogenid-Perowskit-Filme, organische Halbleiter wie Y6, Halbisolatoren, selbstorganisierte Monoschichten und Nanopartikel. Die Ergebnisse sind nun in Nature communications veröffentlicht.

Ziel: Kompaktes Instrument

Die neue Methode gilt als bahnbrechend, urteilen Fachleute wie Prof. Vitaly Podzorov von der Rutgers University, USA, der in Nature Electronics die CLIMAT-Methode mit 15 von 16 Punkten bewertet hat. Insbesondere spart CLIMAT viele Arbeitsschritte, die bei den bisher üblichen Messungen anfallen und damit auch wertvolle Zeit. Anfang 2024 wurde die CLIMAT-Methode vom Europäischen Patentamt unter der Nummer EP23173681.0 zur Patentierung zugelassen. „Derzeit laufen Verhandlungen mit Unternehmen über die Lizenzierung unserer Methode“, sagt Musiienko. Das Ziel ist ein kompaktes Messgerät, etwa so groß wie ein Notebook.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Nachricht
    04.09.2024
    SpinMagIC: EPR auf einem Chip sichert Qualität von Olivenöl und Bier
    Bevor Lebensmittel verderben bilden sich meist bestimmte reaktionsfreudige Moleküle, sogenannte freie Radikale. Bisher war der Nachweis dieser Moleküle für Lebensmittelunternehmen sehr kostspielig. Ein Team aus HZB und Universität Stuttgart hat nun einen tragbaren und kostengünstigen „EPR-on-a-Chip“-Sensor entwickelt, der freie Radikale auch in geringsten Konzentrationen nachweisen kann. Nun bereitet das Team die Gründung eines Spin-off-Unternehmens vor, gefördert durch das EXIST-Forschungstransferprogramm des Bundesministeriums für Wirtschaft und Klimaschutz. Der EPRoC-Sensor soll zunächst bei der Herstellung von Olivenöl und Bier eingesetzt werden, um die Qualität dieser Produkte zu sichern.
  • Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Science Highlight
    03.09.2024
    Internationale Expertise zur Augentumortherapie mit Protonenstrahlung erschienen
    Ein Team aus führenden Expertinnen und Experten aus Medizinphysik, Physik und Strahlentherapie, zu dem auch die HZB-Physikerin Prof. Andrea Denker und der Charité-Medizinphysiker Dr. Jens Heufelder gehören, hat einen Übersichtsartikel zur Protonentherapie von Augentumoren veröffentlicht. Der Beitrag ist im Red Journal, einem der renommiertesten Fachjournale in diesem Bereich erschienen. Er stellt die Besonderheiten dieser Therapieform am Auge vor, erläutert den Stand der Technik und aktuelle Forschungsschwerpunkte, gibt Empfehlungen zur Durchführung der Bestrahlungen und einen Ausblick auf künftige Entwicklungen.