Neutron experiment at BER II reveals new spin phase in quantum materials

Schematic illustration of a 2D spin-lattice with orthogonal orientation of spin pairs. Bound pair of magnons are represented by the red/blue and green pinwheels.

Schematic illustration of a 2D spin-lattice with orthogonal orientation of spin pairs. Bound pair of magnons are represented by the red/blue and green pinwheels. © EPFL

Physicists in front of the High-Field Magnet at BER II during one of the last measurements. Some of the team members did not contribute to this paper (ambient pressure) but to a next publication on the behaviour of the model system under high pressure. Names from left to right: Koji Munakata, Kazuhisa Kakurai, Gaétan Giriat, Luc Testa, Jana Pásztorová, Ellen Fogh and Henrik M. Rønnow.

Physicists in front of the High-Field Magnet at BER II during one of the last measurements. Some of the team members did not contribute to this paper (ambient pressure) but to a next publication on the behaviour of the model system under high pressure. Names from left to right: Koji Munakata, Kazuhisa Kakurai, Gaétan Giriat, Luc Testa, Jana Pásztorová, Ellen Fogh and Henrik M. Rønnow. © EPFL/HZB

New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

 

“We measured in November 2019, our experiment was one of the very last ones performed on the High-Field Magnet at BER,” Dr. Ellen Fogh points out. The physicist leads a team at the Laboratory of Quantum Magnetism at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and has now published intriguing new insights in quantum materials obtained in collaboration with colleagues from Japan, Qatar and Switzerland.

"Many effects in matter only become visible under extreme conditions, i.e. temperatures close to zero kelvin and magnetic fields above 20 Tesla," she says. The perfect place to examine these effects was at the neutron source BER II, where an HZB team has set up an unique High-Field Magnet, reaching up to nearly 26 Teslas.

"The evaluation took a lot of time," she says. This is because the neutron scattering data do not automatically provide a picture, but have to be interpreted. This requires convincing theoretical models. "We played a game of ping-pong with a team of theorists, but now we have some very interesting results.”

Fogh and team analysed samples of SrCu2(BO3)2 - a model system for ideal frustration in a two-dimensional (2D) spin system. It consists of spin pairs that are arranged orthogonally on a square lattice and influence each other in different ways. This "ideally frustrated" geometry leads to many unconventional effects, which are described in terms of entangled quantum states and their excitations (magnons). Magnetic order in such materials is usually described as Bose-Einstein Condensation (BEC) of magnons.

"We wanted to find out whether this magnon BEC also occurs in our model system at high magnetic fields, or whether there is an alternative mechanism," says Fogh. The neutron scattering experiment at the High-Field Magnet of BER II was ideally suited for this purpose: "We were able to measure spin excitations of SrCu2(BO3)2 up to 25.9 T and reproduce the experimental spectra with high accuracy using theoretical models.” The experiments took place at ambient pressure and temperatures close to absolute zero, at 200 millikelvin.

The analysis and interpretation of the measurement data shows that a spin-nematic phase is formed under these extremely high magnetic fields. In place of single magnons, it is bound pairs of magnons condensing in this phase. There is even an analogy to superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.

The results show that neutron scattering experiments in extremely high magnetic fields can be used to explore previously unknown regions of matter, in particular correlated phases of many-body systems. “Under conditions of strong frustration and controlled extremes, many new states and orders can still be found,” concludes Fogh.

Footnote: The authors of the publication thank HZB-scientists and engineers S. Gerischer, P. Heller and R.  Wahle for their assistance with cryogenics and S.  Kempfer and P.  Smeibidl for
ensuring the operation of the high-field magnet.

arö


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.