Best Innovator Award 2023 for Artem Musiienko

Dr. Artem Musiienko received the MCAA Best Innovator Award for his invention of the CLIMAT-Method of characterising semiconductors at the Marie Curie Alumni Association (MCAA) in Milano, Italy, March 2024.</p>
<p>&nbsp;

Dr. Artem Musiienko received the MCAA Best Innovator Award for his invention of the CLIMAT-Method of characterising semiconductors at the Marie Curie Alumni Association (MCAA) in Milano, Italy, March 2024.

  © MCAA

Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).

 

Musiienko has developed a new method to comprehensively characterise semiconductors using a single measurement process: The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The European Patent office has already approved the method's patent (EP23173681), and Artem is currently negotiating with a company to license the technique.

“The CLIMAT method is a disruptive and innovative technique that has the potential to become the gold standard in material characterization”, emphasizes Prof. Antonio Abate. The MCAA Best Innovator Award amounts to 1.500 euros and an award statuette.

arö

  • Copy link

You might also be interested in

  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • 103 schoolgirls on Girls'Day at HZB
    News
    03.04.2025
    103 schoolgirls on Girls'Day at HZB
    On April 3, 2025, the annual Girls' Day took place, giving schoolgirls an insight into various careers in science and technology. We welcomed a total of 103 schoolgirls at our Adlershof and Wannsee sites and offered them a day full of exciting experiments - more participants than ever before!

  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.