BESSY II: How pulsed charging enhances the service time of batteries

© stock.adobe.com

The illustration shows the ageing processes in NMC/graphite lithium-ion batteries during conventional charging (top image) and during charging with pulsed current (bottom image). Pulsed charging leads to significantly fewer cracks in the graphite and NMC particles. Also, the interface between the solid electrode and the liquid electrolyte (SEI) is thinner and has a different composition.

The illustration shows the ageing processes in NMC/graphite lithium-ion batteries during conventional charging (top image) and during charging with pulsed current (bottom image). Pulsed charging leads to significantly fewer cracks in the graphite and NMC particles. Also, the interface between the solid electrode and the liquid electrolyte (SEI) is thinner and has a different composition. © HZB/10.1002/aenm.202400190

An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.


Lithium-ion batteries are powerful, and they are used everywhere, from electric vehicles to electronic devices. However, their capacity gradually decreases over the course of hundreds of charging cycles. The best commercial lithium-ion batteries with electrodes made of so-called NMC532 (molecular formula: LiNi0.5Mn0.3Co0.2O2) and graphite have a service life of up to eight years. Batteries are usually charged with a constant current flow. But is this really the most favourable method? A new study by Prof Philipp Adelhelm's group at HZB and Humboldt-University Berlin answers this question clearly with no. The study in the journal Advanced Energy Materials analyses the effect of the charging protocol on the service time of the battery.

Ageing effects analysed

Part of the battery tests were carried out at Aalborg University. The batteries were either charged conventionally with constant current (CC) or with a new charging protocol with pulsed current (PC). Post-mortem analyses revealed clear differences after several charging cycles: In the CC samples, the solid electrolyte interface (SEI) at the anode was significantly thicker, which impaired the capacity. The team also found more cracks in the structure of the NMC532 and graphite electrodes, which also contributed to the loss of capacity. In contrast, PC-charging led to a thinner SEI interface and fewer structural changes in the electrode materials.

Synchrotron experiments at BESSY II and PETRA III

HZB researcher Dr Yaolin Xu then led the investigation into the lithium-ion cells at Humboldt University and BESSY II with operando Raman spectroscopy and dilatometry as well as X-ray absorption spectroscopy to analyse what happens during charging with different protocols. Supplementary experiments were carried out at the PETRA III synchrotron. "The pulsed current charging promotes the homogeneous distribution of the lithium ions in the graphite and thus reduces the mechanical stress and cracking of the graphite particles. This improves the structural stability of the graphite anode," he concludes. The pulsed charging also suppresses the structural changes of NMC532 cathode materials with less Ni-O bond length variation.

The pulse current frequency is crucial

However, it depends on the frequency of the pulsed current: the series of measurements with a high-frequency pulsed current extended the service life of the commercial lithium-ion battery analysed the most, up to doubling the cycle life (with 80% capacity retention). Co-author Prof. Dr Julia Kowal, an expert in electrical energy storage technology at TU Berlin, emphasises: "A good understanding of the influence of pulsed charging at different frequencies on the SEI layer will be very helpful for the development of more gentle charging processes."

arö


You might also be interested in

  • Dynamic measurements in liquids now possible in the laboratory
    Science Highlight
    23.05.2024
    Dynamic measurements in liquids now possible in the laboratory
    A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.
  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Watching indium phosphide at work
    Science Highlight
    15.05.2024
    Watching indium phosphide at work
    Indium phosphide is a versatile semiconductor. The material can be used for solar cells, for hydrogen production and even for quantum computers – and with record-breaking efficiency. However, little research has been conducted into what happens on its surface. Researchers have now closed this gap and used ultra-fast lasers to scrutinise the dynamics of the electrons in the material.