BESSY II: How pulsed charging enhances the service time of batteries

© stock.adobe.com

The illustration shows the ageing processes in NMC/graphite lithium-ion batteries during conventional charging (top image) and during charging with pulsed current (bottom image). Pulsed charging leads to significantly fewer cracks in the graphite and NMC particles. Also, the interface between the solid electrode and the liquid electrolyte (SEI) is thinner and has a different composition.

The illustration shows the ageing processes in NMC/graphite lithium-ion batteries during conventional charging (top image) and during charging with pulsed current (bottom image). Pulsed charging leads to significantly fewer cracks in the graphite and NMC particles. Also, the interface between the solid electrode and the liquid electrolyte (SEI) is thinner and has a different composition. © HZB/10.1002/aenm.202400190

An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.


Lithium-ion batteries are powerful, and they are used everywhere, from electric vehicles to electronic devices. However, their capacity gradually decreases over the course of hundreds of charging cycles. The best commercial lithium-ion batteries with electrodes made of so-called NMC532 (molecular formula: LiNi0.5Mn0.3Co0.2O2) and graphite have a service life of up to eight years. Batteries are usually charged with a constant current flow. But is this really the most favourable method? A new study by Prof Philipp Adelhelm's group at HZB and Humboldt-University Berlin answers this question clearly with no. The study in the journal Advanced Energy Materials analyses the effect of the charging protocol on the service time of the battery.

Ageing effects analysed

Part of the battery tests were carried out at Aalborg University. The batteries were either charged conventionally with constant current (CC) or with a new charging protocol with pulsed current (PC). Post-mortem analyses revealed clear differences after several charging cycles: In the CC samples, the solid electrolyte interface (SEI) at the anode was significantly thicker, which impaired the capacity. The team also found more cracks in the structure of the NMC532 and graphite electrodes, which also contributed to the loss of capacity. In contrast, PC-charging led to a thinner SEI interface and fewer structural changes in the electrode materials.

Synchrotron experiments at BESSY II and PETRA III

HZB researcher Dr Yaolin Xu then led the investigation into the lithium-ion cells at Humboldt University and BESSY II with operando Raman spectroscopy and dilatometry as well as X-ray absorption spectroscopy to analyse what happens during charging with different protocols. Supplementary experiments were carried out at the PETRA III synchrotron. "The pulsed current charging promotes the homogeneous distribution of the lithium ions in the graphite and thus reduces the mechanical stress and cracking of the graphite particles. This improves the structural stability of the graphite anode," he concludes. The pulsed charging also suppresses the structural changes of NMC532 cathode materials with less Ni-O bond length variation.

The pulse current frequency is crucial

However, it depends on the frequency of the pulsed current: the series of measurements with a high-frequency pulsed current extended the service life of the commercial lithium-ion battery analysed the most, up to doubling the cycle life (with 80% capacity retention). Co-author Prof. Dr Julia Kowal, an expert in electrical energy storage technology at TU Berlin, emphasises: "A good understanding of the influence of pulsed charging at different frequencies on the SEI layer will be very helpful for the development of more gentle charging processes."

arö

  • Copy link

You might also be interested in

  • Leading Sasol scientist appointed as Industrial Research Fellow at HZB
    News
    11.02.2025
    Leading Sasol scientist appointed as Industrial Research Fellow at HZB
    Within the CARE-O-SENE project, HZB is cooperating with the South African company Sasol on innovative catalysts for sustainable aviation fuels (SAF). Now, the collaboration is intensifying: Dr. Denzil Moodley, a leading scientist in the field of Fischer-Tropsch at Sasol Research and Technology, is being appointed as Industrial Research Fellow at HZB. Moodley will contribute his expertise at HZB with the aim of accelerating the innovation cycle for sustainable fuel technologies.
  • HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells
    News
    04.02.2025
    HZB Sets New World Record for CIGS Perovskite Tandem Solar Cells
    Combining two semiconductor thin films into a tandem solar cell can achieve high efficiencies with a minimal environmental footprint. Teams from HZB and Humboldt University Berlin have now presented a CIGS-perovskite tandem cell that sets a new world record with an efficiency of 24.6%, certified by the independent Fraunhofer Institute for Solar Energy Systems.

  • HZB-magazine lichtblick - the new issue is out!
    News
    31.01.2025
    HZB-magazine lichtblick - the new issue is out!
    In the cover story we introduce Astrid Brandt. She is Head of User Coordination at Helmholtz-Zentrum Berlin. She and her team keep constant track of applications, measurement times and publications of the 1000 guest researchers who come to BESSY II each year.

    She has always been fascinated by science. But she has also never let go of her other passion, which is music.