Clean cooking fuel with a great impact for southern Africa

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town.

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town. © UCT

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project.

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project. © UCT

Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

In sub-Saharan Africa, almost one billion people have limited access to clean household energy. The widespread use of biomass (including firewood) as an energy source contributes to deforestation, soil erosion and carbon dioxide emissions.

The GreenQUEST project, funded by the German Federal Ministry of Education and Research (BMBF), aims to develop a green liquefied petroleum gas (LFG or gLFG) as an alternative to liquefied petroleum gas (LPG). The gLFG currently mirrors the efficiency and clean-burning qualities of LPG but without its fossil carbon burden. It is to be produced from green hydrogen, which is obtained using renewable energies, and carbon dioxide captured from the atmosphere.

The CO2-neutral fuel also promises better access to clean energy for low-income households in Africa. GreenQUEST is not only promoting the technical development of green LPG, but is also analysing the economic, environmental and social impact that a market launch of green LPG could have.

50 researchers from South Africa and Germany work hand in hand

More than 50 scientists from South Africa and Germany are working together on the interdisciplinary project. It is led by the Catalysis Institute of the University of Cape Town (UCT) and the Helmholtz Zentrum Berlin. This partnership promotes lasting relationships in the field of energy research and thus strengthens the strategic alliance between South Africa and Germany.

State Secretary of BMBF sees the potential for positive change globally

"The cooperative approach driving the GreenQUEST project has the potential to effect positive change not only in African communities but globally," said State Secretary in the Ministry of Education and Research (BMBF) Prof Dr Sabine Döring on the occasion of her visit to the University of Cape Town. "This exemplifies the commitment of Germany and South Africa to support sustainable initiatives, underscoring the importance of working together for the betterment of all."

red/sz

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.