Clean cooking fuel with a great impact for southern Africa

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town.

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town. © UCT

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project.

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project. © UCT

Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

In sub-Saharan Africa, almost one billion people have limited access to clean household energy. The widespread use of biomass (including firewood) as an energy source contributes to deforestation, soil erosion and carbon dioxide emissions.

The GreenQUEST project, funded by the German Federal Ministry of Education and Research (BMBF), aims to develop a green liquefied petroleum gas (LFG or gLFG) as an alternative to liquefied petroleum gas (LPG). The gLFG currently mirrors the efficiency and clean-burning qualities of LPG but without its fossil carbon burden. It is to be produced from green hydrogen, which is obtained using renewable energies, and carbon dioxide captured from the atmosphere.

The CO2-neutral fuel also promises better access to clean energy for low-income households in Africa. GreenQUEST is not only promoting the technical development of green LPG, but is also analysing the economic, environmental and social impact that a market launch of green LPG could have.

50 researchers from South Africa and Germany work hand in hand

More than 50 scientists from South Africa and Germany are working together on the interdisciplinary project. It is led by the Catalysis Institute of the University of Cape Town (UCT) and the Helmholtz Zentrum Berlin. This partnership promotes lasting relationships in the field of energy research and thus strengthens the strategic alliance between South Africa and Germany.

State Secretary of BMBF sees the potential for positive change globally

"The cooperative approach driving the GreenQUEST project has the potential to effect positive change not only in African communities but globally," said State Secretary in the Ministry of Education and Research (BMBF) Prof Dr Sabine Döring on the occasion of her visit to the University of Cape Town. "This exemplifies the commitment of Germany and South Africa to support sustainable initiatives, underscoring the importance of working together for the betterment of all."

red/sz


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HySPRINT Photovoltaics Lab inaugurated
    News
    20.06.2024
    HySPRINT Photovoltaics Lab inaugurated
    After around four years of renovation, photovoltaics research groups moved into their offices in Kekuléstraße on 20 June 2024. With the reopening, the building has also been given a new name that makes the research more visible: it is now called HySPRINT Photovoltaics Lab.