Clean cooking fuel with a great impact for southern Africa

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town.

Sabine Döring (2nd from right), State Secretary at the Federal Ministry of Education and Research (BMBF), learned about the GreenQUEST initiative during her visit to the University of Cape Town. © UCT

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project.

More than 50 scientists from South Africa and Germany are working together in the interdisciplinary GreenQuest project. © UCT

Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

In sub-Saharan Africa, almost one billion people have limited access to clean household energy. The widespread use of biomass (including firewood) as an energy source contributes to deforestation, soil erosion and carbon dioxide emissions.

The GreenQUEST project, funded by the German Federal Ministry of Education and Research (BMBF), aims to develop a green liquefied petroleum gas (LFG or gLFG) as an alternative to liquefied petroleum gas (LPG). The gLFG currently mirrors the efficiency and clean-burning qualities of LPG but without its fossil carbon burden. It is to be produced from green hydrogen, which is obtained using renewable energies, and carbon dioxide captured from the atmosphere.

The CO2-neutral fuel also promises better access to clean energy for low-income households in Africa. GreenQUEST is not only promoting the technical development of green LPG, but is also analysing the economic, environmental and social impact that a market launch of green LPG could have.

50 researchers from South Africa and Germany work hand in hand

More than 50 scientists from South Africa and Germany are working together on the interdisciplinary project. It is led by the Catalysis Institute of the University of Cape Town (UCT) and the Helmholtz Zentrum Berlin. This partnership promotes lasting relationships in the field of energy research and thus strengthens the strategic alliance between South Africa and Germany.

State Secretary of BMBF sees the potential for positive change globally

"The cooperative approach driving the GreenQUEST project has the potential to effect positive change not only in African communities but globally," said State Secretary in the Ministry of Education and Research (BMBF) Prof Dr Sabine Döring on the occasion of her visit to the University of Cape Town. "This exemplifies the commitment of Germany and South Africa to support sustainable initiatives, underscoring the importance of working together for the betterment of all."

red/sz

  • Copy link

You might also be interested in

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Catalyst Activation and Degradation in Hydrous Iridium Oxides
    Science Highlight
    10.12.2024
    Catalyst Activation and Degradation in Hydrous Iridium Oxides
    The development of efficient catalysts for the Oxygen Evolution Reaction (OER) is crucial for advancing Proton Exchange Membrane (PEM) water electrolysis, with iridium-based OER catalysts showing promise despite the challenges related to their dissolution. Collaborative research by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH and the Fritz-Haber-Institut has provided insights into the mechanisms of OER performance and iridium dissolution for amorphous hydrous iridium oxides, advancing the understanding of this critical process.