MXenes for energy storage: Chemical imaging more than just surface deep

<p class="MsoCaption">Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode (green), electrolyte/ carbonate species (red) and separator (yellow). The Transmission (bulk-sensitive) image is on the left, the electron yield (surface-sensitive) image on the right.

Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode (green), electrolyte/ carbonate species (red) and separator (yellow). The Transmission (bulk-sensitive) image is on the left, the electron yield (surface-sensitive) image on the right. © HZB

What is so special about MXenes and why is the new method so valuable? The short cartoon manages to answer these questions in just a few images. The images were created with the help of ChatGPT.

What is so special about MXenes and why is the new method so valuable? The short cartoon manages to answer these questions in just a few images. The images were created with the help of ChatGPT. © Faidra Amargianou/ChatGPT

A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity. The method was developed by a HZB team led by Dr. Tristan Petit. The scientists demonstrated among others first SXM on MXene flakes, a material used as electrode in lithium-ion batteries.

Since their discovery in 2011, MXenes have gathered significant scientific interest due to their versatile tunable properties and diverse applications, from energy storage to electromagnetic shielding. Researchers have been working to decipher the complex chemistry of MXenes at the nanoscale.

The team of Dr. Tristan Petit now made a significant progress in MXene characterization, as described in their recent publication. They utilized SXM to investigate the chemical bonding of Ti3C2Tx MXenes, with Tx denoting the terminations (Tx=O, OH, F, Cl), with high spatial and spectral resolution. The novelty in this work is to combine simultaneously two detection modes, transmission and electron yield, enabling different probing depths.

SXM provided detailed insights into the chemical composition and structure of MXenes. According to Faidra Amargianou, first author of the study: "Our findings shed light on the chemical bonding within MXene structure, and with surrounding species, offering new perspective for their utilization across various applications, especially in electrochemical energy storage."

For the first time, SXM was employed to image MXenes, revealing details of the local bonding between titanium and terminations within the MXene structure. The researchers also examined the influence of different synthesis routes on MXene chemistry, shedding light on the impact of terminations on the electronic properties of MXene.

Furthermore, the application of SXM in analyzing MXene-based materials in lithium-ion batteries yielded valuable insights into changes in MXene chemistry after battery cycling. As Faidra Amargianou explains, “The bulk of MXene electrode remains stable during electrochemical cycling with signs of possible Li+ intercalation. Electrolyte does not lead to degradation of the MXene and lays on top of the MXene electrode”.

In summary, this study provides valuable insights into the local chemistry of MXenes and underscores the potential of SXM in the characterization of other layered materials. As Petit concludes, "This work highlights the significance of advanced chemical imaging techniques like SXM in unraveling the interactions of layered materials in complex systems. We are currently working on enabling in situ electrochemical SXM measurements directly in liquid environment. "

Further information:

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 947852).

arö

  • Copy link

You might also be interested in

  • Research up close! The Long Night of Science at HZB
    News
    20.06.2025
    Research up close! The Long Night of Science at HZB
    On 28 June, it's that time again: the Long Night of Science will take place from 5 pm to midnight  in Berlin and also in Adlershof! Come around and take a look behind the scenes of our exciting research.
  • HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    News
    19.06.2025
    HZB and National University Kyiv-Mohyla Academy start cooperation in Energy and Climate
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) and the National University of "Kyiv-Mohyla Academy" (NaUKMA) have signed a Memorandum of Understanding (MoU). The MoU serves as the starting point for collaborative research, academic exchange, and capacity-building between the two institutions. Actions will be taken to establish the Joint Research and Policy Laboratory at NaUKMA in Kyiv. The aim of the future laboratory is to jointly develop research and policy analysis, focusing on the energy and climate dimensions of Ukraine’s EU integration.
  • Long Night of Science 2025
    News
    18.06.2025
    Long Night of Science 2025
    Welcome!