Dynamic measurements in liquids now possible in the laboratory

The dashed black lines mark the first thin liquid 'sheet' in which the molecules are dissolved. There are two nozzles in the upper part and a collecting vessel in the lower part (left image). Transmission image of the flat jet (centre image). X-ray spectrum of the solution on the CCD detector (right image).

The dashed black lines mark the first thin liquid 'sheet' in which the molecules are dissolved. There are two nozzles in the upper part and a collecting vessel in the lower part (left image). Transmission image of the flat jet (centre image). X-ray spectrum of the solution on the CCD detector (right image). © HZB

A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.

"Our laboratory setup now makes this measurement method available to a wider community," says HZB physicist Dr. Ioanna Mantouvalou, who drove the development together with partners from the Technische Universität Berlin, the Max Born Institute, the Physikalisch-Technische Bundesanstalt and the company Nano Optics Berlin. "In a first step, the laboratory measurements can also more precisely define where further analyses at synchrotron sources are useful and promising. This allows us to make better use of scarce resources," says Mantouvalou.

Time-resolved soft X-ray spectroscopy provides access to the properties of organic materials and is therefore ideal for studying dynamic changes in the electronic structure of individual elements in disordered systems. However, measurements of liquid solutions in which these molecules or complexes are dissolved are particularly challenging. They require a high photon flux and extremely low noise. Therefore, these experiments require usually large-scale facilities such as modern synchrotron light sources.

In contrast, the new laboratory instrument uses light from a plasma created by the interaction of an intense laser pulse with metal. The new instrument provides a time resolution of 500 picoseconds and allows a very "stable" detection. "We were able to demonstrate this in our study using two examples in an aqueous solution. We analysed the metal complex compounds [Ni(CN)4]2- and [Fe(bpy)3]2+," says Richard Gnewkow, first author and PhD student in Mantouvalou's team.

arö

  • Copy link

You might also be interested in

  • Lithium-sulphur pouch cells investigated at BESSY II
    Science Highlight
    08.01.2025
    Lithium-sulphur pouch cells investigated at BESSY II
    A team from HZB and the Fraunhofer Institute for Material and Beam Technology (IWS) in Dresden has gained new insights into lithium-sulphur pouch cells at the BAMline of BESSY II. Supplemented by analyses in the HZB imaging laboratory and further measurements, a new picture emerges of processes that limit the performance and lifespan of this industrially relevant battery type. The study has been published in the prestigious journal Advanced Energy Materials.
  • Largest magnetic anisotropy of a molecule measured at BESSY II
    Science Highlight
    21.12.2024
    Largest magnetic anisotropy of a molecule measured at BESSY II
    At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a molecule is suited as a molecular nanomagnet. Such nanomagnets have a wide range of potential applications, for example, in energy-efficient data storage. Researchers from the Max Planck Institute for Kohlenforschung (MPI KOFO), the Joint Lab EPR4Energy of the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Helmholtz-Zentrum Berlin were involved in the study.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    13.12.2024
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    This year, the Friends of Helmholtz-Zentrum Berlin (Freundeskreis des HZB e. V.) awarded the Ernst Eckhard Koch Prize to Dr. Dieter Skroblin of the Technische Universität Berlin for his outstanding doctoral thesis. The European Innovation Award Synchrotron Radiation went to Dr. Manfred Faubel from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Dr. Bernd Winter from the Fritz Haber Institute in Berlin. The award ceremony took place at this year's HZB user meeting.