All BESSY II instruments reconnected to the network
Thirteen months ago, HZB fell victim to a criminal cyberattack that also took BESSY II light source and the instruments in the experimental hall out of operation. BESSY II was up and running again after just three weeks and the instruments were gradually put back into operation. Now HZB can report some good news: All experimental stations are again integrated into the new IT networks and can record data.
In a task force led by Andreas Jankowiak and Jens Viefhaus, a team led by Ruslan Ovsyannikov succeeded in implementing a new IT infrastructure and a resilient network architecture. This project is now to be firmly established and perpetuated at HZB. The aim is to achieve the full functionality of the BESSY-II user service, to establish new possibilities for remote experiments and better data management.
The project also benefits from the successes of an international cooperation that is developing a new basis for experimental data management at light sources and small labs called Bluesky. With Bluesky, a new type of experimental data acquisition system is being introduced throughout BESSY II (under the leadership of HZB employees William Smith and Simone Vadilonga). It is already in operation at several BESSY beamlines. The introduction of Bluesky at BESSY II is a milestone and has attracted much attention in the scientific community. Several European accelerators are interested in the novel data control system.
HZB is also participating in the Helmholtz project ROCK-IT (Remote, Operando Controlled, Knowledge-driven, and IT-based) to meet the future challenges of data management and the IT structures of large-scale scientific research facilities. The aim is to develop all necessary tools for the automation and remote access of in-situ and operando experiments at synchrotrons. Simplified access to the experiments is a central concern of the user community.
Roland Müller (red)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=27506;sprache=en
- Copy link
-
BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
-
What vibrating molecules might reveal about cell biology
Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
-
Sasol and HZB deepen collaboration with strategic focus on digitalisation
Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.