Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser

Die Effizienz einer PEC-Zelle hängt von vielen Faktoren ab, unter anderem von der Größe der Gasblasen.

Die Effizienz einer PEC-Zelle hängt von vielen Faktoren ab, unter anderem von der Größe der Gasblasen. © Feng Liang /HZB

Die kombinierten Energieverluste wurden bis zu einem Druck von 20 bar des PEC-erzeugten Wasserstoffs ausgewertet. Die Effizienzverluste sind bei einem Druck von 6-8 bar am geringsten, insbesondere die optischen und thermodynamischen Verluste. Zu diesem Ergebnis kam das Team durch die Kombination von experimentellen Daten mit einem physikalischen Modell.

Die kombinierten Energieverluste wurden bis zu einem Druck von 20 bar des PEC-erzeugten Wasserstoffs ausgewertet. Die Effizienzverluste sind bei einem Druck von 6-8 bar am geringsten, insbesondere die optischen und thermodynamischen Verluste. Zu diesem Ergebnis kam das Team durch die Kombination von experimentellen Daten mit einem physikalischen Modell. © HZB/Nature Communications 2024

Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.

 

Manche bezeichnen photoelektrochemische Zellen (PEC-Zellen) auch als „künstliches Blatt“ – denn ähnlich wie bei der Photosynthese in grünen Blättern und Algen, wo ein komplexes Molekül (Photosystem II) das Sonnenlicht nutzt, um Wasser aufzuspalten, erfüllen in PEC-Zellen anorganische, eigens entwickelte Photoelektroden diese Aufgabe.

Verluste identifizieren und minimieren

PEC-Zellen sind inzwischen beeindruckend effizient: Die leistungsstärksten PEC-Zellen erreichen bereits Wirkungsgrade von bis zu 19 Prozent. Bei solch hohen Wirkungsgraden spielen die Verluste durch Blasenbildung eine wichtige Rolle: Blasen streuen das Licht und verhindern eine optimale Ausleuchtung der Elektrode. Außerdem können Blasen den Kontakt des Elektrolyten mit der Elektrodenoberfläche verhindern und so zu einer elektrochemischen Deaktivierung führen. Um diese Verluste zu minimieren, wäre es hilfreich, die Blasengröße zu verringern, indem die Anlage bei höherem Druck betrieben wird. Bislang wurden jedoch alle PEC-Anlagen bei atmosphärischem Druck (1 bar) betrieben.

PEC-Zellen unter Druck

Ein Team des Instituts für Solare Brennstoffe am HZB hat nun die Wasserspaltung bei erhöhtem Druck unter PEC-relevanten Bedingungen untersucht. Sie setzten PEC-Durchflusszellen auf einen Druck zwischen 1 und 10 bar und zeichneten verschiedene Parameter während der Elektrolyse auf.

Zusätzlich entwickelten sie ein multiphysikalisches Modell des PEC-Prozesses und glichen es mit den experimentellen Daten bei normalem und erhöhtem Druck ab. Dieses Modell ermöglicht es nun, mit den Parametern zu spielen und die entscheidenden Hebel zu identifizieren. „Wir haben zum Beispiel untersucht, wie sich der Betriebsdruck auf die Größe der Gasblasen und ihr Verhalten an den Elektroden auswirkt“, sagt Dr. Feng Liang, Erstautor der Arbeit, die nun in Nature Communications erschienen ist.

Energieverluste lassen sich halbieren

Die Analyse zeigt, dass eine Erhöhung des Betriebsdrucks auf 8 bar den Gesamtenergieverlust halbiert. Dies könnte den Gesamtwirkungsgrad deutlich steigern. „Die optischen Streuverluste können bei diesem Druck fast vollständig vermieden werden“, erklärt Liang. „Wir konnten auch eine deutliche Verringerung der Produktübergänge feststellen, insbesondere des Sauerstofftransfers auf die Gegenelektrode“.

Optimaler Betriebsdruck

Bei höheren Drücken gibt es jedoch keinen Vorteil, so dass das Team 6-8 bar als optimalen Betriebsdruckbereich für PEC-Elektrolyseure vorschlägt. „Diese Erkenntnisse, insbesondere das Multiphysik-Modell, lassen sich auf andere Systeme übertragen und werden uns helfen, die Effizienz von elektrochemischen und photokatalytischen Anlagen zu erhöhen“, sagt Prof. Dr. Roel van de Krol, der das Institut für Solare Brennstoffe am HZB leitet.

Hinweis: Die Arbeiten wurden durch das Helmholtz-Innopool-Projekt „Solar H2: Highly Pure and Compressed“ gefördert. Die Autoren bedanken sich herzlich bei Christian Höhn, Markus Bürger, Lars Drescher und Torsten Wagner für ihre unermüdlichen Beiträge zum Bau dieser Hochdruck-Durchflusszelle.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Postdocs am HZB: Unverzichtbar für Forschung, Innovation und Vielfalt
    Nachricht
    16.09.2024
    Postdocs am HZB: Unverzichtbar für Forschung, Innovation und Vielfalt
    Am Helmholtz-Zentrum Berlin (HZB) arbeiten derzeit 117 Postdocs aus 29 Ländern. Sie spielen eine zentrale Rolle in der Forschung und treiben Innovation und Kreativität voran. Um ihre wertvolle Arbeit zu würdigen, wurde 2009 in den USA die Postdoc Appreciation Week ins Leben gerufen, die mittlerweile auch in Deutschland jährlich in der dritten Septemberwoche gefeiert wird.

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.