Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen

Der Vergleich zwischen den experimentell gewonnenen Daten an der Neutronenquelle ISIS (links) und den Ergebnissen der theoretischen Betrachtung mit der PFFRG-Methode (rechts) zeigt eine hervorragende Übereinstimmung. 

Der Vergleich zwischen den experimentell gewonnenen Daten an der Neutronenquelle ISIS (links) und den Ergebnissen der theoretischen Betrachtung mit der PFFRG-Methode (rechts) zeigt eine hervorragende Übereinstimmung.  © HZB

Die Nickel-Ionen bilden untereinander zwei so genannte Trillium-Gitter, die miteinander verschränkt sind.

Die Nickel-Ionen bilden untereinander zwei so genannte Trillium-Gitter, die miteinander verschränkt sind. © M. Gonzalez / HZB

In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.

Wenn sich Spins in einem Kristallgitter nicht so ausrichten können, dass sie gemeinsam ein Minimum der Energie erreichen, spricht man von magnetischer Frustration. Wird diese Frustration groß genug, dann fluktuieren die Spins ungeordnet weiter, selbst wenn die Temperatur gegen Null geht. Man spricht dann von Quanten-Spin-Flüssigkeiten.

Quanten-Spin-Flüssigkeiten in 3D sind selten

Quanten-Spin-Flüssigkeiten (QSL) besitzen bemerkenswerte Eigenschaften, unter anderem weisen sie topologisch geschützte Phänomene auf, die zum Beispiel für zukünftige, besonders stabile Qbits nützlich wären. Zunächst wurden Quanten-Spin-Flüssigkeiten vor allem in zweidimensionalen Strukturen untersucht, doch in 3D-Strukturen kann das Phänomen ebenfalls auftreten, wenn auch deutlich seltener.

Langbeinit mit Nickel

Nun hat eine internationale Kooperation dieses Verhalten in einer neuen Materialklasse mit einer 3D-Struktur nachgewiesen: Die Langbeinite sind in der Natur selten vorkommende Sulfat-Mineralien; indem man ein oder zwei Elemente aus der Summenformel ersetzt, entstehen Variationen, die alle zu dieser Materialklasse zählen.

Hier entsteht Frustration

Für die Untersuchung wurden künstlich erzeugte Langbeinit-Kristalle mit der Summenformel K2Ni2(SO4)3 hergestellt. Dabei spielt das magnetische Element Nickel die entscheidende Rolle: Die Nickel-Ionen bilden untereinander zwei so genannte Trillium-Gitter, die miteinander verschränkt sind. Dies erzeugt die gewünschte magnetische Frustration, die noch verstärkt wird, wenn ein äußeres Magnetfeld anliegt: Die magnetischen Momente der Nickel-Ionen können sich nicht alle energetisch günstig ausrichten, sondern fluktuieren und bilden eine Quanten-Spin-Flüssigkeit.

Neutronen-Messungen und Theorie: alles passt

Das Team um Ivica Živkovič von der EPFL konnte die magnetischen Fluktuationen an der britischen Neutronenquelle ISIS in Oxford vermessen. Die Proben verhalten sich wie ein Quanten-Spin-Flüssigkeit, und noch nicht einmal nur bei extrem tiefen Temperaturen, sondern auch noch bei „lauwarmen“ 2 Kelvin.

Das Team um den HZB-Theoretiker Johannes Reuther konnte die Messdaten erfolgreich erklären, indem gleich mehrere theoretische Methoden zum Einsatz kamen. „Unser theoretisches Phasendiagramm identifiziert sogar eine "Insel der Liquidität“, die um ein stark frustriertes Tetratrillium-Gitter zentriert ist“, sagt Matias Gonzalez, Erstautor der Studie, und Postdoc im Team Reuther, der die Monte Carlo Simulationen durchgeführt hat. Doktorand Vincent Noculak berechnete die Wechselwirkungen zwischen den Spins mit einer auf  Feynman-Diagrammen basierenden Methode, die Reuther bereits vor einigen Jahren selbst entwickelt hatte (Pseudo-Fermionen funktionale Renormierungsgruppe PFFRG). Die Übereinstimmung zwischen Messdaten und theoretischen Ergebnisse ist überraschend hoch. „Wir können dieses System trotz seiner äußerst komplizierten Wechselwirkungen wirklich sehr gut durch unsere Modellierungen abbilden“, sagt Reuther.

Langbeinite mit Potential

Die Langbeinite sind eine sehr große und in weiten Teilen noch unerforschte Materialklasse. Die Studie zeigt, dass sich die Suche nach Quantenverhalten hier lohnen kann. So hat das Team um die HZB-Physikerin Bella Lake schon neue Vertreter dieser Materialklasse synthetisiert, die ebenfalls als 3D Quantenspinflüssigkeiten in Frage kommen. „Noch ist dies reine Grundlagenforschung“, betont Johannes Reuther, „aber mit dem steigenden Interesse an neuartigen Quantenmaterialien könnten die Langbeinite auch für Anwendungen in der Quanteninformation interessant werden“.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.