Green hydrogen: MXenes shows talent as catalyst for oxygen evolution

The surface of a Vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules.

The surface of a Vanadium carbide MXene has been examined by Scanning Electron Microscopy. The beautiful structures are built by cobalt copper hydroxide molecules. © B. Schmiedecke/HZB

The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.

Green hydrogen is seen as one of the energy storage solutions of the future. The gas can be produced in a climate-neutral way using electricity from the sun or wind by electrolytic water splitting. While hydrogen molecules are produced at one electrode, oxygen molecules are formed at the other. This oxygen evolution reaction (OER) is one of the limiting factors in electrolysis. Special catalysts are needed to facilitate this reaction. Among the best candidates for OER catalysts are, for example, nickel oxides, which are inexpensive and widely available. However, they corrode quickly in the alkaline water of an electrolyser and their conductivity also leaves much to be desired. This is currently preventing the development of low-cost, high-performance electrolysers.

MXene as catalysts

A new class of materials could offer an alternative: MXenes, layered materials made of metals, such as titanium or vanadium, combined with carbon and/or nitrogen. These MXenes have a huge internal surface area that can be put to fantastic use, whether for storing charges or as catalysts.

An international team led by Dr Michelle Browne has now investigated the use of MXenes as catalysts for the oxygen evolution reaction. PhD student Bastian Schmiedecke chemically 'functionalised' the MXenes by docking copper and cobalt hydroxides onto their surfaces. In preliminary tests, the catalysts produced in this way proved to be significantly more efficient than the pure metal oxide compounds. What's more, the catalysts showed no degradation and even improved efficiency in continuous operation.

Measurements at BESSY II

Measurements at the BESSY II X-ray source, with Namrata Sharma and Tristan Petit, showed why this works so well: “We were able to use the Maxymus beamline there to find out how the outer surfaces of the MXene samples differ from the inside,” explains Schmiedecke. The researchers combined scanning electron microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray transmission microscopy (STXM) and X-ray absorption near-edge structure (XANES) to gain further insights into the material.

Outlook: observation under continuous load

"We have been able to show that MXenes have great potential for use as catalysts in electrolysers," says Michelle Browne. The collaboration with partner teams from Trinity College, Dublin, Ireland, and the University of Chemistry and Technology, Prague will continue. In addition to further chemical variations of MXene catalysts, the team also plans to test such catalysts in conventional electrolysers in continuous operation.

arö

  • Copy link

You might also be interested in

  • Sodium-ion batteries: New storage mechanism for cathode materials
    Science Highlight
    18.07.2025
    Sodium-ion batteries: New storage mechanism for cathode materials
    Li-ion and Na-ion batteries operate through a process called intercalation, where ions are stored and exchanged between two chemically different electrodes. In contrast, co-intercalation, a process in which both ions and solvent molecules are stored simultaneously, has traditionally been considered undesirable due to its tendency to cause rapid battery failure. Against this traditional view, an international research team led by Philipp Adelhelm has now demonstrated that co-intercalation can be a reversible and fast process for cathode materials in Na-ion batteries. The approach of jointly storing ions and solvents in cathode materials provides a new handle for the designing batteries with high efficiency and fast charging capabilities. The results are published in Nature Materials.
  • 10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    News
    16.07.2025
    10 million euros in funding for UNITE – Startup Factory Berlin-Brandenburg
    UNITE – Startup Factory Berlin-Brandenburg has been recognised by the Federal Ministry for Economic Affairs and Energy as one of ten nationwide flagship projects for science-based start-ups. UNITE is to be established as a central transfer platform for technology-driven spin-offs from science and industry in the capital region. The Helmholtz Centre Berlin will also benefit from this.

  • Helmholtz Doctoral Award for Hanna Trzesniowski
    News
    09.07.2025
    Helmholtz Doctoral Award for Hanna Trzesniowski
    During her doctoral studies at the Helmholtz Centre Berlin, Hanna Trzesniowski conducted research on nickel-based electrocatalysts for water splitting. Her work contributes to a deeper understanding of alkaline water electrolysis and paves the way for the development of more efficient and stable catalysts. On 8 July 2025, she received the Helmholtz Doctoral Prize, which honours the best and most original doctoral theses in the Helmholtz Association.