Postdocs at HZB: Crucial for research, innovation and diversity

At HZB, 117 postdocs from 29 countries are employed. They play a crucial role in driving the main research activities, fostering creativity and innovation. To honor them, the Postdoc Appreciation Week was first organised in the USA in 2009 and has in the meantime become a regular event in Germany as well in the third week of September every year.

The Postdoc Appreciation Week will take place from 16 to 20 September 2024 and is an important occasion to recognise and celebrate postdocs for their significant contributions to research and academic life.

Bernd Rech, Scientific Director of HZB, emphasizes: "Our postdocs make a crucial contribution to scientific progress at HZB. They are not only involved in research but also contribute to the development of scientific infrastructures, take responsibility for supervising doctoral researchers, and support their career development. The Postdoc Appreciation Week is an excellent opportunity to highlight how indispensable our postdocs are to HZB, with their diversity and creativity."

During the Postdoc Appreciation Week, HZB postdocs have the opportunity to participate in various online trainings and events organized by institutions across Germany. More information about and registration sites for these events can be found here.

red/sz

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.