Photovoltaik-Reallabor knackt die Marke von 100 Megawattstunden

Blick auf die Solarfassade des Reallabors.

Blick auf die Solarfassade des Reallabors. © HZB

Vor rund drei Jahren ging das Reallabor am HZB in Betrieb. Seitdem liefert die Photovoltaik-Fassade Strom aus Sonnenlicht. Am 27. September 2024 wurde die Marke von 100 Megawattstunden erreicht.

Solarfassaden bieten ungenutztes Potenzial, um sauberen Strom zu erzeugen. Wie viel sie tatsächlich leisten und welche Umwelteinflüsse dabei eine Rolle spielen, wird am Reallabor des HZB untersucht. Die dort installierten Fassadenelemente erreichten nun die 100-Megawattstunden-Marke.

Dies entspricht der Strommenge, die benötigt wird, um einen Vier-Personen-Haushalt in Deutschland 30 Jahre lang mit sauberem Strom zu versorgen. Am HZB wird der erzeugte Strom vollständig selbst genutzt, was die Anlage besonders wirtschaftlich macht. Laut ersten Schätzungen haben sich die Mehrkosten im Vergleich zu einer herkömmlichen Alu-Fassade nach 18 Jahren amortisiert.

Was ist das Reallabor?

Das Reallabor ist ein Forschungsgebäude auf dem BESSY II-Gelände in Berlin-Adlershof, das mit einer Photovoltaik-Fassade ausgestattet ist. Insgesamt wurden 360 rahmenlose, blau beschichtete Module an der Süd-, West- und Nordfassade des Gebäudes installiert. Dabei wurde besonderer Wert auf eine ansprechende Gestaltung der Solarfassade gelegt.

Das Reallabor verfügt über insgesamt 120 Mess-Stellen und Sensoren, unter anderem auch für Temperatur, Sonnenbestrahlung und Luftströmungen. So kann das Verhalten der Solarmodule und des gesamten PV-Fassadensystems bei verschiedenen Jahreszeiten und Witterungsbedingungen über einen langen Zeitraum hinweg genau beobachtet werden.

Ergebnisse fließen in die Beratungsstelle für bauwerkintegrierte Photovoltaik ein

Diese Erkenntnisse fließen direkt in die Beratung ein und kommen somit auch der Gesellschaft zugute. Das HZB betreibt die unabhängige Beratungsstelle für bauwerkintegrierte Photovoltaik (BAIP). Die Expert*innen beraten Architekt*innen, Bauherren und Planende über Technologien, Produkte, Gestaltungsoptionen, technische Umsetzbarkeiten und rechtliche Rahmenbedingungen.

 

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Science Highlight
    14.04.2025
    Elegantes Verfahren zum Auslesen von Einzelspins über Photospannung
    Diamanten mit spezifischen Defekten können als hochempfindliche Sensoren oder Qubits für Quantencomputer genutzt werden. Die Quanteninformation wird dabei im Elektronenspin-Zustand der Defekte gespeichert. Allerdings müssen die Spin-Zustände bislang optisch ausgelesen werden, was extrem aufwändig ist. Nun hat ein Team am HZB eine elegantere Methode entwickelt, um die Quanteninformation über eine Photospannung auszulesen. Dies könnte ein deutlich kompakteres Design von Quantensensoren ermöglichen.