Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden

© FHI/OpenAI

Die Entwicklung effizienter Katalysatoren für die Sauerstoffentwicklung (OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse, wobei Iridium-basierte OER-Katalysatoren trotz der Herausforderungen im Zusammenhang mit ihrer Auflösung vielversprechend sind. Eine gemeinsame Forschung des Helmholtz-Zentrums Berlin und des Fritz-Haber-Instituts hat Einblicke in die Mechanismen der OER-Leistung und der Iridiumauflösung für amorphe hydrierte Iridiumoxide geliefert und das Verständnis dieses kritischen Prozesses vorangetrieben. Messungen an BESSY II haben dazu wesentliche Erkenntnisse geliefert.

Die Wasserelektrolyse ist ein zentraler Bestandteil globaler nachhaltiger und erneuerbarer Energiesysteme und ermöglicht die Produktion von Wasserstoff als Brennstoff. Dieser saubere und vielseitige Energieträger kann in verschiedenen Anwendungen genutzt werden, wie etwa bei der chemischen CO2-Umwandlung und der Stromerzeugung. Der Einsatz erneuerbarer Energiequellen wie Solar- und Windenergie zur Stromversorgung des Elektrolyseprozesses kann dazu beitragen, die Kohlenstoffemissionen zu reduzieren und den Übergang zu einer kohlenstoffarmen Wirtschaft zu fördern.

Die Entwicklung effizienter und stabiler Anodenmaterialien für die Sauerstoffentwicklung (Oxygen Evolution Reaction, OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse-Technologie. Die OER ist eine zentrale elektrochemische Reaktion, die Sauerstoffgas (O₂) aus Wasser (H₂O) oder Hydroxidionen (OH⁻) während der Wasserspaltung erzeugt. Diese scheinbar einfache Reaktion ist in Energiewandlungstechnologien wie der Wasserelektrolyse von entscheidender Bedeutung, da sie schwer effizient zu realisieren ist und ein gleichzeitiger Prozess zur gewünschten Wasserstoffproduktion darstellt. Iridium (Ir)-basierte Materialien, insbesondere amorphe hydrierte Iridiumoxide (am-hydr-IrOx), stehen im Mittelpunkt dieser Forschung aufgrund ihrer hohen Aktivität. Ihre Anwendung wird jedoch durch hohe Auflösungsraten des kostbaren Iridiums begrenzt.

Eine gemeinsame Anstrengung von Wissenschaftler*innen der Abteilung Interface Design am Helmholtz-Zentrum Berlin für Materialien und Energie GmbH und der Theorieabteilung am Fritz-Haber-Institut der Max-Planck-Gesellschaft hat nun grundlegende Einblicke in die miteinander verknüpften Mechanismen der OER und der Ir-Auflösung in amorphen, hydrierten Iridiumoxiden (am-hydr-IrOx) geliefert. Traditionell war das Verständnis dieser Prozesse durch die Abhängigkeit von kristallinen Iridiumoxidmodellen begrenzt. In dieser gemeinsamen Anstrengung wurden hydrierte Iridiumoxid-Dünnschichten (HIROFs) als Modellsystem untersucht, das eine einzigartige Iridiumsuboxid-Spezies mit hoher OER-Aktivität aufdeckte. In situ Röntgenphotoelektronen- und Röntgenabsorptionsspektroskopie an den Synchrotronen BESSY II und ALBA sowie die Dichtefunktionaltheorie (DFT) wurden eingesetzt, um die lokalen elektronischen und geometrischen Strukturen dieser Materialien unter Betriebsbedingungen zu untersuchen, was zur Einführung eines neuartigen Oberflächenmodells mit H-terminierten Nanoschichten führte. Dieses Modell repräsentiert besser die kurzreichweitige Struktur von am-hydr-IrOx und zeigt verlängerte Ir-O-Bindungslängen im Vergleich zu traditionellen kristallinen Modellen.

Darüber hinaus wurde die Ir-Auflösung als spontaner, thermodynamisch getriebener Prozess identifiziert, der bereits bei Potenzialen unterhalb der OER-Aktivierung auftritt, während das vorherrschende mechanistische Bild davon ausgeht, dass der Abbau durch seltene Ereignisse während der OER getrieben wird. Diese Entdeckung erforderte die Entwicklung eines neuen mechanistischen Rahmens zur Beschreibung der Ir-Auflösung durch die Bildung von Ir-Defekten. Die Studie bot auch Einblicke in die Beziehung zwischen Aktivität und Stabilität von am-hydr-IrOx, indem systematisch die DFT-berechnete OER-Aktivität in verschiedenen Ir- und O-Chemieumgebungen analysiert wurde.

Insgesamt stellen die aktuellen Forschungsergebnisse konventionelle Wahrnehmungen der Iridiumauflösung und OER-Mechanismen in Frage und bieten einen alternativen dual-mechanistischen Rahmen. Durch die Untersuchung eines hochaktiven und porösen Katalysators mit einer einzigartigen hydroxilierten Ir-Suboxid-Spezies entwickelt die Studie ein nanoskaliges atomistisches Modell, das konventionelle kristallbasierte Modelle übertrifft.

Diese Forschung stellt nicht nur das traditionelle Verständnis in Frage, sondern bietet auch eine neue atomistische Perspektive auf die empfindliche Beziehung zwischen OER-Aktivität und Haltbarkeit von Edelmetalloxidkatalysatoren. Die Ergebnisse dürften breit anwendbar sein und möglicherweise die Entwicklung effizienterer und stabilerer Anodenmaterialien zur Förderung der PEM-Technologie leiten.

Giulia Glorani/ FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.

  • 5000. Patient in der Augentumortherapie mit Protonen behandelt
    Nachricht
    19.08.2025
    5000. Patient in der Augentumortherapie mit Protonen behandelt
    Seit mehr als 20 Jahren bieten die Charité – Universitätsmedizin Berlin und das Helmholtz-Zentrum Berlin (HZB) gemeinsam die Bestrahlung von Augentumoren mit Protonen an. Dafür betreibt das HZB einen Protonenbeschleuniger in Berlin-Wannsee, die medizinische Betreuung der Patienten erfolgt durch die Charité. Anfang August wurde der 5000. Patient behandelt.
  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.