Katalysatorplattform verbessert das Verständnis von arbeitenden Katalysatoren

© FHI

Eine neuartige Katalysatorplattform, bekannt als Laterally Condensed Catalysts (LCC), wurde entwickelt, um das Design und die Analyse der funktionalen Schnittstelle zu ermöglichen, die die aktive Phase mit ihrer Unterstützung verbindet. Diese Schnittstelle beeinflusst nicht nur die chemischen Eigenschaften der reaktiven Schnittstelle, sondern kontrolliert auch deren Stabilität und damit die Nachhaltigkeit der katalytischen Materialien. Die Entwicklung wurde wesentlich durch die Anwendung von operando-Spektroskopie am Synchrotron BESSY II unterstützt, die es ermöglichte, die dynamischen Prozesse und Strukturen unter Reaktionsbedingungen zu beobachten und zu verstehen.

Unbeschränkte Kombinationen in der Zusammensetzung zwischen aktiver Phase und Unterstützung ermöglichen beispielsweise den direkten Energietransfer zur reaktiven Schnittstelle in der Elektrokatalyse oder elektrischen Heizung. Die physikalische Synthesemethodik im Rahmen des FHI-HZB CatLab-Projekts, die aus der Solarzellentechnologie stammt, ermöglicht den Zugang zu präzisen und homogenen Strukturen und Chemie. Dies erleichtert das mechanistische Verständnis von arbeitenden Katalysatoren und deren anschließende Optimierung durch die Untersuchung reaktiver und funktionaler Schnittstellen mittels Operando-Spektroskopie. Die hier untersuchten Dünnschichtkatalysatoren wurden mit dem Ziel synthetisiert, die Schnittstellenstruktur von Leistungskatalysatoren zu entwerfen und die Materiallücke zwischen Modell- und realen Pulverkatalysatoren zu schließen, während der Einsatz von Edelmetallen minimiert wird. Seine einzigartige flache und dicht gepackte Struktur (LCC) ermöglicht es, eine homogene hohe Dichte an oberflächenaktiven Stellen zu erreichen, wodurch der Gehalt an Material im "Bulk" oder der Unterfläche der aktiven Katalysatoren minimiert wird, was sich positiv auf die Selektivität der katalysierten Reaktion auswirkt.

Diese Bemühungen werden in einer Studie beschrieben, die in Nature Communications veröffentlicht wurde, mit dem Titel "Rationally Designed Laterally-Condensed-Catalysts Deliver Robust Activity and Selectivity for Ethylene Production in Acetylene Hydrogenation." Die Studie ist Teil des CatLab-Projekts, einer Zusammenarbeit, die prominent das Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI), das Helmholtz-Zentrum Berlin für Materialien und Energie und das Max-Planck-Institut für chemische Energiekonversion umfasst. Das CatLab-Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Lesen Sie die ausführliche Mitteilung auf der Webseite des FHI >

FHI

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
    Nachricht
    09.10.2025
    Prashanth Menezes erhält VAIBHAV-Stipendium der indischen Regierung
    Das indische Ministerium für Wissenschaft und Technologie hat die Empfängerinnen und Empfänger des Vaishvik Bhartiya Vaigyanik (VAIBHAV)-Stipendiums bekannt gegeben, einer Flaggschiff-Initiative zur Förderung der Zusammenarbeit zwischen der indischen Forschungs-Diaspora in den MINT-Fächern und führenden Forschungseinrichtungen in Indien. Zu den Preisträgern 2025 zählt Dr. Prashanth W. Menezes, der am HZB die Abteilung für Materialchemie für Katalyse leitet.