Nanoislands on silicon with switchable topological textures

Artistic representation of the center down-convergent polarization field. It results from the compression of the polarization flux by the sidewalls of the nanoislands. The texture in each nanoisland resembles a swirling vortex of liquid flowing into a narrowing funnel.

Artistic representation of the center down-convergent polarization field. It results from the compression of the polarization flux by the sidewalls of the nanoislands. The texture in each nanoisland resembles a swirling vortex of liquid flowing into a narrowing funnel. © Laura Canil /HZB

In each row the sample had a different orientation. The columns show the topography (left) and piezoresponse force microscopy (PFM) images. In the lateral PFM amplitude, the nanoislands display a pattern of dark and light regions, evoking coffee beans, which is typical for textures of center-type polar distribution.

In each row the sample had a different orientation. The columns show the topography (left) and piezoresponse force microscopy (PFM) images. In the lateral PFM amplitude, the nanoislands display a pattern of dark and light regions, evoking coffee beans, which is typical for textures of center-type polar distribution. © HZB

Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.

Ferroelectrics at the nanoscale exhibit a wealth of polar and sometimes swirling (chiral) electromagnetic textures that not only represent fascinating physics, but also promise applications in future nanoelectronics. For example, ultra-high-density data storage or extremely energy-efficient field-effect transistors. However, a sticking point has been the stability of these topological textures and how they can be controlled and steered by an external electrical or optical stimulus.

New perspectives:

A team led by Prof. Catherine Dubourdieu (HZB and FU Berlin) has now published a paper in Nature Communications that opens up new perspectives. Together with partners from the CEMES-CNRS in Toulouse, the University of Picardie in Amiens and the Jozef Stefan Institute in Ljubljana, they have thoroughly investigated a particularly interesting class of nanoislands on silicon and explored their suitability for electrical manipulation.

Nanoislands on silicon

“We have produced BaTiO3 nanostructures that form tiny islands on a silicon substrate,” explains Dubourdieu. The nano-islands are trapezoidal in shape, with dimensions of 30–60 nm (on top), and have stable polarisation domains. “By fine tuning the first step of the silicon wafer passivation, we could induce the nucleation of these nanoislands,” says Dong-Jik Kim, a scientist in Dubourdieu’s team.

Domain patterns studied by PFM

These domains can be reversibly switched by an electric field. The domain patterns were studied using vertical and lateral piezoresponse force microscopy (PFM). “Both the PFM measurement data and the phase field modelling indicate a centred, downward convergent polarisation, which fits perfectly well with the information from scanning transmission electron microscopy (STEM),” says Ibukun Olaniyan, PhD student.

Reversible switching

In particular, the scientists were able to detect a swirling component around the nanoisland axis that causes the chirality. “The texture resembles a swirling vortex of liquid flowing into a narrowing funnel," explains Dubourdieu. “The center down-converging nanodomains can be reversibly switched to center up-diverging nanodomains by an external electric field,” she points out.

“In this work, we have shown that chiral topological textures can be stabilised by shaping nanostructures in an appropriate way,” says Dubourdieu. The ability to create and electrically manipulate chiral, swirling, polar textures in BaTiO3 nanostructures is very promising for future applications.

Note:  This work was partially supported by the ERC Advanced Grant LUCIOLE (101098216).

arö

  • Copy link

You might also be interested in

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!