Nanoislands on silicon with switchable topological textures

Artistic representation of the center down-convergent polarization field. It results from the compression of the polarization flux by the sidewalls of the nanoislands. The texture in each nanoisland resembles a swirling vortex of liquid flowing into a narrowing funnel.

Artistic representation of the center down-convergent polarization field. It results from the compression of the polarization flux by the sidewalls of the nanoislands. The texture in each nanoisland resembles a swirling vortex of liquid flowing into a narrowing funnel. © Laura Canil /HZB

In each row the sample had a different orientation. The columns show the topography (left) and piezoresponse force microscopy (PFM) images. In the lateral PFM amplitude, the nanoislands display a pattern of dark and light regions, evoking coffee beans, which is typical for textures of center-type polar distribution.

In each row the sample had a different orientation. The columns show the topography (left) and piezoresponse force microscopy (PFM) images. In the lateral PFM amplitude, the nanoislands display a pattern of dark and light regions, evoking coffee beans, which is typical for textures of center-type polar distribution. © HZB

Nanostructures with specific electromagnetic patterns promise applications in nanoelectronics and future information technologies. However, it is very challenging to control those patterns. Now, a team at HZB examined a specific class of nanoislands on silicon with interesting chiral, swirling polar textures, which can be stabilised and even reversibly switched by an external electric field.

Ferroelectrics at the nanoscale exhibit a wealth of polar and sometimes swirling (chiral) electromagnetic textures that not only represent fascinating physics, but also promise applications in future nanoelectronics. For example, ultra-high-density data storage or extremely energy-efficient field-effect transistors. However, a sticking point has been the stability of these topological textures and how they can be controlled and steered by an external electrical or optical stimulus.

New perspectives:

A team led by Prof. Catherine Dubourdieu (HZB and FU Berlin) has now published a paper in Nature Communications that opens up new perspectives. Together with partners from the CEMES-CNRS in Toulouse, the University of Picardie in Amiens and the Jozef Stefan Institute in Ljubljana, they have thoroughly investigated a particularly interesting class of nanoislands on silicon and explored their suitability for electrical manipulation.

Nanoislands on silicon

“We have produced BaTiO3 nanostructures that form tiny islands on a silicon substrate,” explains Dubourdieu. The nano-islands are trapezoidal in shape, with dimensions of 30–60 nm (on top), and have stable polarisation domains. “By fine tuning the first step of the silicon wafer passivation, we could induce the nucleation of these nanoislands,” says Dong-Jik Kim, a scientist in Dubourdieu’s team.

Domain patterns studied by PFM

These domains can be reversibly switched by an electric field. The domain patterns were studied using vertical and lateral piezoresponse force microscopy (PFM). “Both the PFM measurement data and the phase field modelling indicate a centred, downward convergent polarisation, which fits perfectly well with the information from scanning transmission electron microscopy (STEM),” says Ibukun Olaniyan, PhD student.

Reversible switching

In particular, the scientists were able to detect a swirling component around the nanoisland axis that causes the chirality. “The texture resembles a swirling vortex of liquid flowing into a narrowing funnel," explains Dubourdieu. “The center down-converging nanodomains can be reversibly switched to center up-diverging nanodomains by an external electric field,” she points out.

“In this work, we have shown that chiral topological textures can be stabilised by shaping nanostructures in an appropriate way,” says Dubourdieu. The ability to create and electrically manipulate chiral, swirling, polar textures in BaTiO3 nanostructures is very promising for future applications.

Note:  This work was partially supported by the ERC Advanced Grant LUCIOLE (101098216).

arö

  • Copy link

You might also be interested in

  • New material for efficient separation of Deuterium at elevated Temperatures
    Science Highlight
    19.03.2025
    New material for efficient separation of Deuterium at elevated Temperatures
    A novel porous material capable of separating deuterium (D2) from hydrogen (H2) at a temperature of 120 K has been introduced. Notably, this temperature exceeds the liquefaction point of natural gas, thus facilitating large-scale industrial applications. This advancement presents an attractive pathway for the economical production of D2 by leveraging the existing infrastructure of liquefied natural gas (LNG) production pipelines. The research conducted by Ulsan National Institute of Science & Technology (UNIST), Korea, Helmholtz-Zentrum Berlin, Heinz Maier Leibnitz Zentrum (MLZ), and Soongsil University, Korea, has been published in Nature Communications.
  • Georg Forster Research Fellow explores photocatalysts
    News
    17.03.2025
    Georg Forster Research Fellow explores photocatalysts
    Dr. Moses Alfred Oladele is working on photocatalysis for CO2 conversion in a joint project with the group of Dr. Matt Mayer, HZB, and Prof. Andreas Taubert at the University of Potsdam. The chemist from Redeemer's University in Ede, Nigeria, came to Berlin in the summer of 2024 with a Georg Forster Research Fellowship from the Alexander von Humboldt Foundation and will work at HZB for two years.
  • Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB
    News
    14.03.2025
    Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB
    In the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB. He will also have an affiliation with Humboldt University in Berlin, where he will gain teaching experience in preparation for a future professorship.