Innovative Batterie-Elektrode aus Zinn-Schaum

Zinn lässt sich zu einem hochporösen Schaum verarbeiten. Wie dieser Zinn-Schaum (abgebildet) sich als Batterieelektrode verhält, hat ein interdisziplinäres Team am HZB untersucht.

Zinn lässt sich zu einem hochporösen Schaum verarbeiten. Wie dieser Zinn-Schaum (abgebildet) sich als Batterieelektrode verhält, hat ein interdisziplinäres Team am HZB untersucht. © B. Bouabadi / HZB

Metallbasierte Elektroden in Lithium-Ionen-Akkus versprechen deutlich höhere Kapazitäten als konventionelle Graphit-Elektroden. Leider degradieren sie aufgrund von mechanischen Beanspruchungen während der Lade- und Entladezyklen. Nun zeigt ein Team am HZB, dass ein hochporöser Schaum aus Zinn den mechanischen Stress während der Ladezyklen deutlich besser abfedern kann. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.

Moderne Lithium-Ionen-Batterien setzen in der Regel auf eine mehrschichtige Graphit-Elektrode, während die Gegenelektrode oft aus Kobaltoxid besteht. Beim Laden und Entladen wandern Lithium-Ionen in das Graphit ein, ohne signifikante Volumenänderungen des Materials zu verursachen. Die Kapazität von Graphit ist jedoch begrenzt, die Suche nach alternativen Materialien wird dadurch zu einem spannenden Forschungsgebiet. So bieten Metallbasierte Elektroden, beispielsweise aus Aluminium oder Zinn, potenziell eine höhere Kapazität. Allerdings neigen sie bei der Lithiumaufnahme zu einer deutlichen Volumenausdehnung, was mit Strukturveränderungen und Materialermüdung verbunden ist.

Eine Option, um Metall-Elektroden zu realisieren, die weniger rasch „ermüden“, besteht in der Nanostrukturierung der dünnen Metallfolien. Eine andere Option ist die Anwendung von porösen Metallschäumen. Als Metall ist Zinn besonders attraktiv, denn es besitzt eine fast dreimal höhere Kapazität pro Kilogramm als Graphit und ist darüber hinaus kein seltener Rohstoff sondern reichlich vorhanden.

Ein Forschungsteam aus dem Helmholtz-Zentrum Berlin (HZB) hat nun verschiedene Arten von Zinnelektroden während des Entlade- und Ladevorgangs mit operando Röntgenbildgebung untersucht, und einen innovativen Ansatz entwickelt, um diesem Problem zu begegnen. Ein Teil dieser Untersuchungen fand dabei an der BAMline an BESSY II statt. Außerdem entstanden hochaufgelöste radioskopische-Röntgen-Aufnahmen in Zusammenarbeit mit den Imaging-Experten Dr. Nikolai Kardjilov und Dr. André Hilger am HZB. „Auf diese Weise konnten wir die strukturellen Veränderungen in den untersuchten Elektroden auf Sn-Metallbasis während der Lade-/Entladevorgänge verfolgen“, sagt Dr. Bouchra Bouabadi, die die experimentelle Studie durchgeführt hat. In Zusammenarbeit mit dem Batterieexperten Dr. Sebastian Risse zeigt sie, wie sich die Morphologie der Zinnelektroden während des Betriebs durch die inhomogene Aufnahme von Lithium-Ionen verändert.

Die beste Variante der Zinn-Elektrode fertigte Dr. Francisco Garcia-Moreno an: Einen Schaum aus Zinn mit unzähligen, mikrometergroßen Poren. „Wir konnten zeigen, dass in einem solchen Zinn-Schaum deutlich weniger mechanischer Stress während der Volumenausdehnung auftritt“, sagt Dr. Risse. Das macht Zinn-Schäume als potentielles Material für Lithium-Batterien interessant.

Garcia-Moreno hat bereits zahlreiche Metallschäume untersucht, darunter auch solche für Bauteile in der Automobilindustrie und Aluminiumschäume für Batterieelektroden. „Die von uns an der TU Berlin entwickelten Zinnschäume sind hochporös und eine interessante Alternative zu traditionellen Elektrodenmaterialien“, sagt er. Dabei sei die Strukturierung von Zinnschäumen entscheidend, um mechanische Belastung maximal zu reduzieren. Auch aus wirtschaftlicher Sicht könnte die Zinn-Schaum-Technologie interessant sein: „Obwohl Zinnschaum teurer ist als herkömmliche Zinnfolien, bietet er eine kostengünstigere Alternative zu teuren Nanostrukturierungen, während er gleichzeitig deutlich mehr Lithium-Ionen speichern kann und damit eine Steigerung der Kapazität ermöglicht.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.