Mesoporous silicon: Semiconductor with new talents

In mesoporous silicon, charge transport is dominated by electrons in extended, wave-like states (blue).

In mesoporous silicon, charge transport is dominated by electrons in extended, wave-like states (blue). © M. Künsting / HZB

Silicon is the best-known semiconductor material. However, controlled nanostructuring drastically alters the material's properties. Using a specially developed etching apparatus, a team at HZB has now produced mesoporous silicon layers with countless tiny pores and investigated their electrical and thermal conductivity. For the first time, the researchers elucidated the electronic transport mechanism in this mesoporous silicon. The material has great potential for applications and could also be used to thermally insulate qubits for quantum computers.

Mesoporous silicon is crystalline silicon with disordered nanometer-sized pores. The material has a huge internal surface area and is also biocompatible. This opens up a wide range of potential applications, from biosensors to battery anodes and capacitors. In addition, the material’s exceptionally low thermal conductivity suggests applications as thermal insulator.

Understanding transport properties in silicon nanostructures

Although mesoporous silicon has been known for decades, until now there has been a lack of fundamental understanding of the transport of charge carriers and the possible involvement of lattice vibrations (phonons).However, in order to develop the material in a targeted manner, a precise understanding of the transport properties and processes is required,’ says Priv. Doz. Dr. Klaus Habicht, who heads the Dynamics and Transport in Quantum Materials (QM-ADT) department at HZB.

Habicht and his team have now presented new insights. They synthesised a series of silicon nanostructures using an etching technique optimised at HZB and determined the temperature-dependent electrical conductivity and thermopower.

Electrons in wavelike states dominate the transport

‘By analysing the data, we were able to unambiguously identify the fundamental charge transport process,’ says Dr. Tommy Hofmann, first author of the study. The key finding: ‘It is not the electrons, localised by disorder, that hop from one localised state to the next that dominate charge transport, but those in extended, wave-like states.’ In this case, the conductivity decreases with increasing disorder. The activation energy required to move charge carriers over a disorder-dependent ‘mobility edge’ increases.

In contrast to a hopping process, lattice vibrations do not play a role in charge transport. This was particularly evident from measurements of the Seebeck effect, which probe the electrical voltage across a sample when it is exposed to a temperature difference along a defined direction.

‘This is the first time that we have provided a reliable and novel explanation for the microscopic charge carrier transport in disordered, nanostructured silicon,’ says Dr. Tommy Hofmann.

Manifold applications

These results are highly relevant to practical applications, as mesoporous silicon could be ideal for silicon-based qubits. These qubits operate at cryogenic temperatures, typically below 1 Kelvin, and require very good thermal insulation to prevent heat from the surrounding environment from being absorbed and erasing the information stored in the qubits. ‘To use a metaphor, you could think of mesoporous silicon as a type of insulating foam used in building construction,’ says Habicht.

The use of mesoporous silicon may also be suitable for semiconductor applications that have so far failed due to the high thermal conductivity of crystalline or polycrystalline silicon. ‘The disorder can be used in a targeted way,’ says Habicht. Semiconductors with purely randomly distributed mesopores would be an exciting new class of materials for technical applications ranging from photovoltaics, thermal management and nanoelectronics to qubits for quantum computers.

arö

  • Copy link

You might also be interested in

  • Hydrogen storage in MXene: It all depends on diffusion processes
    Science Highlight
    23.06.2025
    Hydrogen storage in MXene: It all depends on diffusion processes
    Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.
  • MAX IV and BESSY II initiate new collaboration to advance materials science
    News
    17.06.2025
    MAX IV and BESSY II initiate new collaboration to advance materials science
    Swedish national synchrotron laboratory MAX IV and Helmholtz-Zentrum Berlin (HZB) with BESSY II light source jointly announce the signing of a 5-year Cooperation Agreement. The new agreement establishes a framework to strengthen cooperation for operational and technological development in the highlighted fields of accelerator research and development, beamlines and optics, endstations and sample environments as well as digitalisation and data science.
  • Michael Naguib is visiting HZB as a Humboldt Research Awardee
    News
    16.06.2025
    Michael Naguib is visiting HZB as a Humboldt Research Awardee
    Professor Michael Naguib, from Tulane University in the USA, is one of the discoverers of a new class of 2D materials: MXenes are characterised by a puff pastry-like structure and have many applications, such as in the production of green hydrogen or as storage media for electrical energy. During his Humboldt Research Award in 2025, Professor Naguib is working with Prof Volker Presser at the Leibniz Institute for New Materials in Saarbrücken and with Dr Tristan Petit at HZB.