BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing

Das Schema zeigt (von links nach rechts): Heiße Elektronen, die durch einen Laser in Platin erzeugt werden (hellblau), das Kupfer (gelb) wird verwendet, um den Laserimpuls zu blockieren, sodass sich nur die heißen Elektronen ausbreiten und einen Spin-Strom durch die magnetische Spin-Ventil-Struktur aus Kobalt-Platin (blau-braun) und Eisen-Gadolinium (grün) transportieren.

Das Schema zeigt (von links nach rechts): Heiße Elektronen, die durch einen Laser in Platin erzeugt werden (hellblau), das Kupfer (gelb) wird verwendet, um den Laserimpuls zu blockieren, sodass sich nur die heißen Elektronen ausbreiten und einen Spin-Strom durch die magnetische Spin-Ventil-Struktur aus Kobalt-Platin (blau-braun) und Eisen-Gadolinium (grün) transportieren. © D. Gupta /HZB

Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.

Spintronische Bauelemente basieren nicht auf bewegten Ladungen, sondern darauf, dass magnetische Momente, in der Regel Elektronenspins, ihre Ausrichtung verändern können. Spintronische Bauelemente können daher extrem schnell arbeiten, aktuell in Zeitskalen von hundert Pikosekunden (eine Pikosekunde ist 10-12 s). Die mikroskopischen Prozesse selbst laufen jedoch noch viel schneller ab, im Bereich von wenigen hundert Femtosekunden (1 fs = 10-15 s).

Magnetisches Schichtsystem als Spinventil

Nun ist es einem internationalen Team um Prof. Christine Boeglin von der Universität Straßburg erstmals gelungen, einige dieser dynamischen Prozesse in einem magnetischen Schichtsystem experimentell zu beobachten. Sie untersuchten ein sogenanntes Spinventil, das aus alternierenden Platin-Kobalt-Schichten (Pt/Co) und einer Eisen-Gadolinium-Legierung besteht. In diesem System sind die Wechselwirkungen zwischen angeregten (heißen) Elektronen und den magnetischen Schichten besonders stark. Erstautorin Deeksha Gupta führte die Experimente an der Femtoslicing-Station von BESSY II zusammen mit dem HZB-Team durch, das diese weltweit einzigartige Infrastruktur betreibt.

Das Experiment:

Ein Femtosekunden-Infrarotlaser erzeugt zunächst heiße Elektronen (HE) in einer Platin-Deckschicht. Eine 60 Nanometer dicke Kupferschicht blockiert die Photonen und sorgt dafür, dass nur heißen Elektronen die Co/Pt-Schicht an der Vorderseite des Spinventils erreichen. Sie fungiert als Spinpolarisator und produziert spinpolarisierte HE-Impulse (SPHE). Diese SPHE-Impulse konnte das Team nun charakterisieren. Dafür analysierte es die Entmagnetisierungsdynamik innerhalb der ferrimagnetischen Fe74Gd26-Schicht am Ende des Spinventils.

Einzigartige Möglichkeiten an BESSY II 

Dies war so tatsächlich nur an BESSY II möglich: „Nur an der Femtoslicing-Beamline an BESSY II können wir die ultraschnelle Spindynamik für jede Komponente eines komplexen Proben-Systems separat untersuchen“, sagt HZB-Wissenschaftler Christian Schüßler-Langeheine. Das Team verwendete ultrakurze (~100 fs) weiche Röntgenimpulse, die auf die Resonanzen von Eisen- und Gadolinium-Atomen abgestimmt waren, und zeichnete deren jeweilige dynamische Reaktionen auf SPHE-Impulse auf.

Mit Hilfe von theoretischen Modellen, die an der Universität Uppsala entwickelt wurden, konnten sie die entscheidenden Parameter der SPHE-Stromimpulse bestimmen, insbesondere die Impulsdauer, die Spinpolarisationsrichtung und die Stromdichten, die zur Reproduktion der experimentellen Ergebnisse erforderlich sind.

Deeksha Gupta, die die Experimente im Rahmen ihrer Doktorarbeit durchgeführt hat, ist inzwischen Postdoktorandin am HZB und forscht weiterhin an magnetischen Materialien: „Dies ist ein Gebiet, das sich rasch entwickelt. Zum ersten Mal konnten wir wirklich Aufschluss über das Verhalten von Spinströmen in komplexen magnetischen Materialien gewinnen. Dies könnte den Weg für technologische Entwicklungen ebnen.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.
  • 10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Nachricht
    16.07.2025
    10 Millionen Euro Förderung für UNITE – Startup Factory Berlin-Brandenburg
    Die UNITE – Startup Factory Berlin-Brandenburg wird vom Bundesministerium für Wirtschaft und Energie als eines von zehn bundesweiten Leuchtturmprojekten für wissenschaftsbasierte Gründungen ausgezeichnet. UNITE soll als zentrale Transfer-Plattform für technologiegetriebene Ausgründungen aus der Wissenschaft und Industrie in der Hauptstadtregion etabliert werden. Auch das Helmholtz-Zentrum Berlin wird davon profitieren.