Joint Berlin Data & AI Center planned

© Adobe stock

Data-driven research is crucial for tackling societal challenges- whether in health, materials, or climate research. In a collaboration that is so far unique, Berlin University Alliance (BUA), the Max Delbrück Center, and the Helmholtz-Zentrum Berlin, together with the Zuse Institute Berlin, aim to establish a powerful Data and AI Center in the German capital.

The Helmholtz-Zentrum Berlin for Materials and Energy (HZB), the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin University Alliance (BUA), and the Zuse Institute Berlin (ZIB) recently signed a joint declaration of intent for this purpose. The goal is a flagship project of outstanding importance for the future of Berlin as a research hub.

The partners aim to create a regionally anchored and internationally competitive infrastructure that enables high-performance, cross-institutional, data-driven cutting-edge research. It will effectively complement the national high-performance infrastructure at the ZIB. The partners agree that complex scientific simulations and the use of artificial intelligence in particular require new, high-performance data infrastructures. Joint planning and use of resources represents a particularly sustainable approach.

As a first step, a new high-performance research Data Center is to be built at the HZB site in Berlin-Adlershof in cooperation with the ZIB. The HZB and ZIB have been engaged in intensive planning for the past year and aim to implement the first phase of the data center as quickly as possible. In the long term, computing capacity is to be expanded to up to 5 megawatts through new construction.

In the next phase, the partners will jointly explore potential funding models, administrative structures, and usage scenarios. These will be incorporated into a detailed cooperation agreement to ensure long-term, cross-institutional access to and operation of the Data Center.

 

sz

  • Copy link

You might also be interested in

  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Perovskite solar cells from Germany are competing with China's PV technology - HZB 2025 Technology Transfer Award
    News
    15.10.2025
    Perovskite solar cells from Germany are competing with China's PV technology - HZB 2025 Technology Transfer Award
    Photovoltaics is the leading technology in the transition to clean energy. However, traditional silicon-based solar technology has reached its efficiency limit. Therefore, a HZB-team has developed a perovskite-based multi-junction cell architecture. For this, Kevin J. Prince and Siddhartha Garud received the Helmholtz-Zentrum Berlin's (HZB) Technology Transfer Prize of 5,000 euros.

  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.