Grüner Wasserstoff: MXene steigert die Wirkung von Katalysatoren

Links ist die blätterteigartige Struktur der MXene-Probe unter dem Rasterelektronenmikroskop zu sehen. Rechts das resultierende Kompositmaterial nach der Einlagerung von Kobalt-Eisen in die MXene-Struktur.

Links ist die blätterteigartige Struktur der MXene-Probe unter dem Rasterelektronenmikroskop zu sehen. Rechts das resultierende Kompositmaterial nach der Einlagerung von Kobalt-Eisen in die MXene-Struktur. © HZB

An den enorm großen inneren Oberflächen von MXenen können sich katalytisch aktive Partikel anheften. Mit diesem raffinierten Trick lässt sich ein preiswerter und viel effizienterer Katalysator für die Sauerstoffentwicklungsreaktion realisieren, die bei der Erzeugung von grünem Wasserstoff bislang als Engpass gilt. Dies hat eine internationale Forschergruppe um die HZB-Chemikerin Michelle Browne nun in einer aufwendigen Untersuchung nachgewiesen. Die Studie ist in Advanced Functional Materials veröffentlicht.

Grüner Wasserstoff soll im Energiesystem der Zukunft eine wichtige Rolle spielen: als chemischer Energiespeicher, als Rohstoff für die Chemieindustrie und eventuell auch für klimafreundliche Treibstoffe. Grüner Wasserstoff lässt sich nahezu klimaneutral erzeugen, wenn die Energie für die elektrolytische Aufspaltung von Wasser in seine Elemente aus Sonne oder Wind kommt. Zusätzlich werden jedoch spezielle Katalysatoren benötigt, um die Entwicklung von Wasserstoff und Sauerstoff an den beiden Elektroden zu beschleunigen. Vor allem die Sauerstoffentwicklungsreaktion ist träge und würde ohne gute Katalysatoren deutlich mehr Energie kosten. Solche Katalysatoren bestehen jedoch heute noch aus Edelmetallen, die selten und teuer sind. Damit grüner Wasserstoff in den benötigten Mengen und preisgünstig hergestellt werden kann, werden jedoch Katalysatoren aus reichlich verfügbaren Elementen benötigt.

MXene mit Blätterteigstruktur

Am HZB entwickelt ein Team um Michelle Browne raffinierte Alternativen, die auf so genannten MXenen basieren. MXene sind blätterteigartige Strukturen aus Kohlenstoff und so genannten Übergangsmetallen. Katalytisch aktive Partikel könnten sich an die inneren Oberflächen in MXenen anlagern und dadurch eine stärkere katalytische Wirkung entfalten. Dass diese Idee funktioniert, zeigt nun eine neue Studie in der Fachzeitschrift Advanced Functional Materials.

Varianten mit Fehlstellen

Erstautor Can Kaplan hat als Basis dafür unterschiedliche Varianten eines Vanadiumcarbid-MXenes verwendet. Dazu nutzte er einen Forschungsaufenthalt im Labor der schwedischen Kooperationspartner an der Linköping University, den er im Rahmen eines Austauschprogramms während seiner Promotion einplanen konnte.  „Wir konnten dort zwei MXene-Varianten synthetisieren, reines V2CTx und V1,8CTx mit 10 % Vanadiumvakanzen.  Die Vanadium-Fehlstellen sorgen dafür, dass in dieser Variante die innere Oberfläche noch einmal deutlich größer ausfällt“, erläutert Can Kaplan.

Einlagerung von Kobalt-Eisen

Im HZB-Labor von Michelle Browne entwickelte Kaplan dann ein mehrschrittiges chemisches Verfahren, um Katalysatorpartikel aus Co0,66Fe0,34 in die MXene einzubetten. Dass dies gelang, zeigen die Aufnahmen der Proben mit dem Rasterelektronenmikroskop: die reinen MXene zeichnen sich durch eine blätterteigartige Struktur aus, die sich durch Einlagerung von Kobalt-Eisen-Partikeln deutlich veränderte.

Top: CoFe im MXene mit vielen Fehlstellen

Dann untersuchte das Team die Wirkung der unterschiedlichen Katalysator-Proben im Einsatz während der Elektrolyse.  Die Ergebnisse waren sehr eindeutig: Auch Kobalt-Eisen wirkt bereits als Katalysator. Eingebettet in MXene steigt jedoch die katalytische Wirkung deutlich an. Und nochmals stärker wird sie, wenn Kobalt-Eisen in ein MXene mit zahlreichen Fehlstellen eingebettet wird.

Mit In-situ-Röntgenabsorptionsspektroskopie an der Synchrotronquelle SOLEIL in Frankreich konnte das Team verfolgen, wie sich die Oxidationszahlen von Kobalt und Eisen im Lauf der elektrolytischen Reaktion veränderte.

Auch für die Industrie interessant

„Wir haben diesen Katalysator sowohl im Labormaßstab getestet als auch in einem deutlich größeren Elektrolyseur“, betont Kaplan. „Das macht unsere Ergebnisse wirklich aussagekräftig und auch interessant für eine industrielle Anwendung.“

Aktuell hat die Industrie MXene als Trägermaterial für katalytisch aktive Partikel noch nicht auf dem Schirm“, sagt Michelle Browne. „Wir leisten hier Grundlagenforschung, die aber eine klare Anwendungsperspektive hat: Unsere Ergebnisse haben nun erste Einblicke in das komplexe Zusammenspiel zwischen Trägerstruktur, Einbettung von katalytisch aktiven Partikeln und katalytischer Aktivität geliefert.“ Ihr Fazit ist: Bei der Entwicklung von innovativen, sehr effizienten und preisgünstigen Katalysatoren lohnt es sich, auch MXene zu betrachten.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.