KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen

Rechenpower im Chemie-Labor: Kevin Jablonka (links) und sein Team am HIPOLE Jena. Foto: Renzo Paulus

Rechenpower im Chemie-Labor: Kevin Jablonka (links) und sein Team am HIPOLE Jena. Foto: Renzo Paulus

Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

Die Studie ist jetzt im Fachjournal Nature Chemistry erschienen (DOI 10.1038/s41557-025-01815-x).

Insgesamt wurden über 2.700 chemische Aufgaben aus Forschung und Lehre getestet – von Grundlagenwissen bis hin zu komplexen Problemen. In Bereichen wie der Vorhersage von Reaktionen oder der Analyse großer Datensätze konnten KI-Modelle oft mit hoher Effizienz punkten. Gleichzeitig zeigte sich jedoch eine kritische Schwäche: Die Modelle lieferten auch dann selbstsichere Antworten, wenn sie faktisch falsch lagen. Menschliche Chemikerinnen und Chemiker zeigten sich hier deutlich vorsichtiger und hinterfragten ihre Einschätzungen.

„Unsere Studie macht deutlich, dass KI ein wertvolles Werkzeug sein kann – aber kein Ersatz für menschliche Expertise“, sagt Dr. Kevin M. Jablonka, Leiter der Studie. Die Ergebnisse geben wichtige Impulse für den verantwortungsvollen Einsatz von KI in der chemischen Forschung und Lehre.

Das HIPOLE Jena (Helmholtz-Institut für Polymere in Energieanwendungen Jena) ist ein Institut des HZB in Kooperation mit der Friedrich-Schiller-Universität Jena (FSU Jena).

ma

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.